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Introduction

In 2008, De, Kurur, Saha & Saptharishi (DKSS) published a paper on
how to multiply large numbers based on ideas of Fürer’s algorithm.
Their procedure was implemented and compared to Schönhage-
Strassen multiplication to see how it performs in practice.

But first, some context. . .
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Representation of Large Numbers

On 64-bit machines a word can hold non-negative values <W = 264.
A large number 0 ≤ a <W n is represented as array of n words:
(a0, a1, . . . , an−1).
Each word ai is a “digit” of a in base W .
Ordinary (grade-school) multiplication of a · b: multiply each ai with
each bj . Run-time is O(n2). Function name OMUL.

Can we do better?
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Multiplication: Karatsuba

(Karatsuba 1960): cut numbers a and b in half. With the help of
some linear time operations, only 3 half-sized multiplications are
needed:

a = a0 + a1W n, b = b0 + b1W n

P0 = a0b0, P1 = (a0 − a1)(b0 − b1), P2 = a1b1

ab = P0(1 + W n)− P1W n + P2(W n + W 2n)

When done recursively run-time is O(nlog2 3) ≈ O(n1.58). Function
name KMUL.
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Multiplication: Toom-Cook

(Toom 1963, Cook 1966): cut numbers in k ≥ 2 pieces and perform
only 2k − 1 “small” multiplications plus some linear time operations.
Run-time is O(nlogk(2k−1)). For k = 3, 4, 5 this is ≈ O(n1.46),
O(n1.40), O(n1.37). Function name for k = 3 is T3MUL.

Problem: the number of linear time operations grows quickly with k.
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Multiplication: FFT-Methods

(Strassen 1968): Cut numbers a and b in n/2 pieces each and
interpret pieces as coefficients of polynomials over R[x ], R ring.
Evaluate polynomials at n points, multiply the sample values and
interpolate to obtain product. Propagate carries.
If ω is primitive n-th root of unity in R, evaluation and interpolation
can be done on ωk , 0 ≤ k < n. We can use the fast Fourier transform
(FFT) with O(n · log n) steps. Function name QMUL.

Problem: the larger n becomes, the more precision is needed in
coefficient ring R. This limits the length of input numbers.
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Multiplication: Schönhage-Strassen

(Schönhage & Strassen 1971): Use R = Z/(2K + 1)Z and ω = 2 as
primitive 2K -th root of unity for the FFT.
Multiplications by ωk are just cyclic shifts, can be done in linear time.
Run-time is O(N · logN · log logN), coefficient length is O(

√
N).

Function name SMUL.

Problem: the order of ω is not very high. Except for
√
2, there are

generally no higher order roots of unity, thus FFT length is quite
limited.
Nevertheless, Schönhage-Strassen is the standard for multiplication of
large numbers with over ≈ 150 000 bits.
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Crossover Points Between Algorithms
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Multiplication: DKSS

(De, Kurur, Saha & Saptharishi 2008): Use polynomial quotient ring
R = P[α]/(αm + 1) with P = Z/pcZ, p = h · 2M + 1 prime.
Select M = N/ log2 N and m = logN as powers of 2, M > m.
Let µ = M/m.
From a generator of F∗

p calculate a primitive 2M-th root of unity
ρ ∈ P[α] with ρµ = α.

With α as primitive 2m-th root of unity and modulus (αm + 1)
multiplications by αk are cyclic shifts: fast!
ρ is high order root of unity: large FFT length.
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Multiplication: DKSS (continued)

A length-2M FFT can be calculated like this:
2M = µ · 2m.
Interpret the coefficients as a matrix with 2m rows and µ columns.
Do µ many length-2m FFTs (on the columns) with α as root of unity.
Perform bad multiplications on the coefficients, i.e. multiply them by
some ρk .
Do 2m many length-µ FFTs (on the rows) by calling the FFT routine
recursively.

Multiplication in R is reduced to integer multiplication by use of
Kronecker-Schönhage substitution.
Run-time is O(N · logN · K log∗ N) with K = 16, coefficient length is
O(log2 N). Function name DKSS_MUL.
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Multiplication: Simplified DKSS

In genuine DKSS, prime p is searched at run-time. To keep that time
low, p must be kept small. So, input numbers are encoded as
k-variate polynomials, k constant.
Since input length is limited by available memory, we can precompute
all of the required primes p and generators of F∗

p.
This allows to use univariate polynomials and simplifies calculation of
the root of unity ρ. We can use c = 1 and hence P = Z/pZ.
For 64-bit architecture, only 6 primes need to be precomputed.
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Comparison of Execution Time
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Quotient of Run-times
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Results

For the numbers tested (up to 1.27 GB input size, total temporary
memory required 26 GB):

DKSS_MUL is between 27 and 36 times slower than SMUL.
DKSS_MUL requires ≈ 2.3 times the temporary memory than SMUL.
About 80 % of run-time is spent with bad multiplications, i.e.
multiplications by ρk that are not powers of α.
Another 9 % are spent for pointwise products.
Recursion did not take place. Even with the largest inputs, inner
multiplications were just 195 words long.
Cache effects did not slow it down, either.
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When Will DKSS Beat Schönhage-Strassen?

Model SMUL run-time:

Tσ ≤ σ · N · logN · log logN.

Model DKSS_MUL run-time:

Tη ≤ η · N · logN · K log∗ N , K = 16.

Find fitting constants σ and η from measured run-times.
Solve Tσ ≥ Tη numerically:

N ≥ 10104796 !!
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Future work

Some ideas:
Exploit the sparseness of the factors in the underlying multiplication.
Estimated speed-up: factor 2.
Use variant of Kronecker-Schönhage substitution (Harvey).
Parameters p, M and m should be selected with more care.
Estimated speed-up: maybe 30 %.
Modular reduction should be sped up (Montgomery’s trick or other).
Estimated speed-up: about 22 %.
Total estimated possible speed-up: factor 3.2, but even then
DKSS_MUL is at best 8.5 times slower than SMUL.
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Source Code & Thanks

Implementation was done in C++ and assembly language under
Windows as part of BIGNUM, my large integer library.
Multiplication compares favorably with MPIR (GMP for Windows)
and is only 1.3 times slower on average.
Source code is available from http://www.wrogn.com/bignum and
licensed under LGPL.

Many thanks to Andreas Weber and Michael Clausen.
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