Implementation of the DKSS Algorithm for Multiplication of Large Numbers

Christoph Lüders

Universität Bonn

The International Symposium on Symbolic and Algebraic Computation, July 6–9, 2015, Bath, United Kingdom

- In 2008, De, Kurur, Saha & Saptharishi (DKSS) published a paper on how to multiply large numbers based on ideas of Fürer's algorithm.
- Their procedure was implemented and compared to Schönhage-Strassen multiplication to see how it performs in practice.
- But first, some context...

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- On 64-bit machines a *word* can hold non-negative values $< W = 2^{64}$.
- A large number 0 ≤ a < Wⁿ is represented as array of n words: (a₀, a₁,..., a_{n-1}).
- Each word a_i is a "digit" of a in base W.
- Ordinary (grade-school) multiplication of $a \cdot b$: multiply each a_i with each b_j . Run-time is $O(n^2)$. Function name OMUL.
- Can we do better?

- 本間 と く ヨ と く ヨ と 二 ヨ

 (Karatsuba 1960): cut numbers a and b in half. With the help of some linear time operations, only 3 half-sized multiplications are needed:

$$a = a_0 + a_1 W^n, \qquad b = b_0 + b_1 W^n$$

$$P_0 = a_0 b_0, \qquad P_1 = (a_0 - a_1)(b_0 - b_1), \qquad P_2 = a_1 b_1$$

$$ab = P_0(1 + W^n) - P_1 W^n + P_2(W^n + W^{2n})$$

• When done recursively run-time is $O(n^{\log_2 3}) \approx O(n^{1.58})$. Function name KMUL.

- (Toom 1963, Cook 1966): cut numbers in k ≥ 2 pieces and perform only 2k − 1 "small" multiplications plus some linear time operations.
- Run-time is $O(n^{\log_k(2k-1)})$. For k = 3, 4, 5 this is $\approx O(n^{1.46})$, $O(n^{1.40})$, $O(n^{1.37})$. Function name for k = 3 is T3MUL.
- Problem: the number of linear time operations grows quickly with k.

Multiplication: FFT-Methods

- (Strassen 1968): Cut numbers a and b in n/2 pieces each and interpret pieces as coefficients of polynomials over R[x], R ring.
- Evaluate polynomials at *n* points, multiply the sample values and interpolate to obtain product. Propagate carries.
- If ω is primitive n-th root of unity in R, evaluation and interpolation can be done on ω^k, 0 ≤ k < n. We can use the fast Fourier transform (FFT) with O(n · log n) steps. Function name QMUL.
- Problem: the larger *n* becomes, the more precision is needed in coefficient ring *R*. This limits the length of input numbers.

Multiplication: Schönhage-Strassen

- (Schönhage & Strassen 1971): Use $R = \mathbb{Z}/(2^{K} + 1)\mathbb{Z}$ and $\omega = 2$ as primitive 2K-th root of unity for the FFT.
- Multiplications by ω^k are just cyclic shifts, can be done in linear time.
- Run-time is $O(N \cdot \log N \cdot \log \log N)$, coefficient length is $O(\sqrt{N})$. Function name SMUL.
- Problem: the order of ω is not very high. Except for $\sqrt{2}$, there are generally no higher order roots of unity, thus FFT length is quite limited.
- Nevertheless, Schönhage-Strassen is the standard for multiplication of large numbers with over $\approx 150\,000$ bits.

Crossover Points Between Algorithms

Christoph Lüders (Universität Bonn)

Implementation of DKSS Multiplication

ISSAC 2015, Bath, U.K.

Multiplication: DKSS

- (De, Kurur, Saha & Saptharishi 2008): Use polynomial quotient ring $R = \mathcal{P}[\alpha]/(\alpha^m + 1)$ with $\mathcal{P} = \mathbb{Z}/p^c\mathbb{Z}$, $p = h \cdot 2M + 1$ prime.
- Select $M = N/\log^2 N$ and $m = \log N$ as powers of 2, M > m. Let $\mu = M/m$.
- From a generator of \mathbb{F}_{ρ}^{*} calculate a primitive 2*M*-th root of unity $\rho \in \mathcal{P}[\alpha]$ with $\rho^{\mu} = \alpha$.
- With α as primitive 2m-th root of unity and modulus (α^m + 1) multiplications by α^k are cyclic shifts: fast!
- ρ is high order root of unity: large FFT length.

9 / 17

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Multiplication: DKSS (continued)

- A length-2*M* FFT can be calculated like this:
 - $2M = \mu \cdot 2m$.
 - Interpret the coefficients as a matrix with 2m rows and μ columns.
 - Do μ many length-2*m* FFTs (on the columns) with α as root of unity.
 - Perform *bad multiplications* on the coefficients, i.e. multiply them by some ρ^k .
 - Do 2m many length- μ FFTs (on the rows) by calling the FFT routine recursively.
- Multiplication in *R* is reduced to integer multiplication by use of Kronecker-Schönhage substitution.
- Run-time is $O(N \cdot \log N \cdot K^{\log^* N})$ with K = 16, coefficient length is $O(\log^2 N)$. Function name DKSS_MUL.

▲□▶ ▲□▶ ▲目▶ ▲目▶ - ヨ - ろの⊙

- In genuine DKSS, prime p is searched at run-time. To keep that time low, p must be kept small. So, input numbers are encoded as k-variate polynomials, k constant.
- Since input length is limited by available memory, we can precompute all of the required primes p and generators of 𝔽^{*}_p.
- This allows to use univariate polynomials and simplifies calculation of the root of unity ρ. We can use c = 1 and hence P = Z/pZ.
- For 64-bit architecture, only 6 primes need to be precomputed.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Comparison of Execution Time

Quotient of Run-times

Christoph Lüders (Universität Bonn)

Implementation of DKSS Multiplication

ISSAC 2015, Bath, U.K.

Results

For the numbers tested (up to 1.27 GB input size, total temporary memory required 26 GB):

- DKSS_MUL is between 27 and 36 times slower than SMUL.
- DKSS_MUL requires ≈ 2.3 times the temporary memory than SMUL.
- About 80 % of run-time is spent with bad multiplications, i.e. multiplications by ρ^k that are not powers of α.
- Another 9 % are spent for pointwise products.
- Recursion did not take place. Even with the largest inputs, inner multiplications were just 195 words long.
- Cache effects did not slow it down, either.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

When Will DKSS Beat Schönhage-Strassen?

• Model SMUL run-time:

$$T_{\sigma} \leq \sigma \cdot N \cdot \log N \cdot \log \log N.$$

Model DKSS_MUL run-time:

$$T_{\eta} \leq \eta \cdot N \cdot \log N \cdot K^{\log^* N}, \quad K = 16.$$

- Find fitting constants σ and η from measured run-times.
- Solve $T_{\sigma} \geq T_{\eta}$ numerically:

$$N \geq 10^{10^{4796}}$$
 !!

E 6 4 E 6

Some ideas:

- Exploit the sparseness of the factors in the underlying multiplication. Estimated speed-up: factor 2.
- Use variant of Kronecker-Schönhage substitution (Harvey).
- Parameters *p*, *M* and *m* should be selected with more care. Estimated speed-up: maybe 30 %.
- Modular reduction should be sped up (Montgomery's trick or other). Estimated speed-up: about 22 %.

・ロット 御り とうりょうり しつ

ISSAC 2015, Bath, U.K.

16 / 17

• Total estimated possible speed-up: factor 3.2, but even then DKSS_MUL is at best 8.5 times slower than SMUL.

- Implementation was done in C++ and assembly language under Windows as part of BIGNUM, my large integer library.
- Multiplication compares favorably with MPIR (GMP for Windows) and is only 1.3 times slower on average.
- Source code is available from http://www.wrogn.com/bignum and licensed under LGPL.
- Many thanks to Andreas Weber and Michael Clausen.

(人間) トイヨト イヨト ニヨ