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Ford: “What do you get if you multiply six . . . by nine — by nine? Is that it?”
Arthur: “That’s it. Six by nine: forty-two! I always said that there is something fundamentally
wrong about the universe.”

The Hitchhiker’s Guide to the Galaxy radio series, episode 6

“Warum hat er es denn so eilig?”

N. N. about Arnold Schönhage and his fast multiplication
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Chapter 1

Introduction

Multiplication of integers is one of the most basic arithmetic operations. Yet, if numbers get
larger, the time needed to multiply two numbers increases as well. The naive method to multiply
requires c ·N2 bit-operations to multiply numbers with N digits, where c is some constant.† For
large numbers this process soon becomes too slow and faster means are desirable.

Fortunately, in the 1960s methods were discovered that lowered the number of operations suc-
cessively until in 1971 Schönhage and Strassen [SS71] found a technique that only requires
O(N · logN · log logN) bit-operations.‡ This algorithm was the asymptotically fastest known
method to multiply until in 2007 Fürer [Fü07] found an even faster way. Asymptotically means
that the algorithm was the fastest, provided numbers are long enough. Elaborate algorithms
often involve some costs for set-up that only pay off if the inputs are long enough.§

Fürer’s algorithm inspired De, Kurur, Saha and Saptharishi to their multiplication method
[DKSS08], published in 2008, and a follow-up paper [DKSS13], the latter being discussed in this
thesis and which I call DKSS multiplication. Both Fürer’s and DKSS’ new algorithms require
N · logN ·2O(log∗N) bit-operations, where log∗N (pronounced “log star”) is the number of times
the logarithm function has to be applied to get a value ≤ 1.

However, Fürer conjectured that his new method only becomes faster than Schönhage and
Strassen’s algorithm for “astronomically large numbers” [Fü09, sec. 8]. Feeling unhappy about
this vague assessment, I implemented the DKSS algorithm and compared it to Schönhage and
Strassen’s method to see if or when any improvement in speed could be achieved in practice.
Both algorithms use only integer operations, in contrast to Fürer’s algorithm that uses floating
point operations.

The ability to multiply numbers with millions or billions of digits is not only academically
interesting, but bears much practical relevance. For example, number theoretical tasks like
primality tests require fast multiplication of potentially very large numbers. Such calculations
can be performed nowadays with computer algebra systems like Magma, Maple, Mathematica,
MATLAP, or Sage. Calculation of π or e to billions of digits or computing billions of roots of

†Usually, the constant is omitted and instead of c · N2 we write O(N2). The constant c is hidden in the
O(. . .).

‡The logarithm function to base 10, log10 N , is approximately the number of decimal digits of N . So if N is
multiplied by 10, the logarithm just increases by 1. This is to show how slowly it is growing.

§Think of finding names in a stack of business cards: if you sort the cards first, you can find a name quickly,
but it is only worth the effort if you search for a certain number of names.

1



2 Chapter 1. Introduction

Riemann’s zeta function are other fields that requires fast large number multiplication [GG13,
sec. 8.0].

Also, fast multiplication is an important building block of a general library for arithmetical
operations on long numbers, like the GNU Multiple Precision Arithmetic Library [GMP14].
Addition and subtraction are not hard to implement and many of the more complex tasks —
like inversion, division, square root, greatest common divisor — revert back to multiplication,
cf. [GKZ07]. Once these operations are implemented for integers, they can be used to provide
arbitrary-precision arithmetic for floating point numbers that attenuate rounding problems, cf.
[GLTZ10].

Another big application for multiplication of long numbers is polynomial multiplication with
integer coefficients, since it can be reduced to one huge integer multiplication through Kronecker-
Schönhage substitution [Sch82, sec. 2]. If (multivariate) polynomials are of high degree, the
resulting integers can become very long and fast means for multiplication are essential. Factoring
of polynomials is also an important field of activity, see [GKZ07].

All elaborate multiplication methods use some sort of fast Fourier transform (FFT) at their
core. The main idea behind all FFT multiplication methods is to break a long number into
smaller pieces and interpret those pieces as coefficients of a polynomial. Since a polynomial of
degree less than 2n is uniquely determined by its sample values for 2n pairwise different sample
points, two polynomials of degree less than n can be multiplied like this:†

1. Evaluate both polynomials at the same 2n sample points,

2. multiply the sample values pairwise, and

3. interpolate the polynomial from the sample value products.

The FFT is “fast”, since it computes n sample values with only O(n · logn) operations, which
is an enormous advance from the naive approach and its O(n2) operations. This method was
already known by Gauss in 1805 [HJB85], but rediscovered by Cooley and Tukey in 1965 [CT65]
and then revolutionized computation.

The method by Schönhage and Strassen breaks numbers of N bits into pieces of length O(
√
N)

bits. Furthermore, it is cleverly designed to take advantage of the binary nature of today’s
computers: multiplications by 2 and its powers are particularly simple and fast to perform. This
is why it has not only held the crown of the asymptotically fastest multiplication algorithm for
over 35 years, but is also in widespread practical use today.

The new DKSS multiplication has a better asymptotic time bound, but its structure is more
complicated. This elaborated structure allows input numbers to be broken into pieces only
O((logN)2) bits small. However, the arithmetic operations are more costly. The purpose of
this thesis is to see if or when DKSS multiplication becomes faster than Schönhage-Strassen
multiplication in practical applications.

Chapter 2 of this thesis presents an overview of multiplication algorithms from the naive method
to techniques that provide a good trade-off if numbers are of medium length (like Karatsuba’s

†Since the resulting polynomial is the product of its two factors, it has degree 2n − 2. Therefore, at least
2n− 1 sample points are needed to recover the result.



Chapter 1. Introduction 3

method in Section 2.4). The fast Fourier transform is introduced in Section 2.6 and is followed
by a detailed description of Schönhage and Strassen’s procedure in Section 2.9. All methods
were implemented and their run-times are determined theoretically, measured in practice and
illustrated graphically. Schönhage and Strassen’s algorithm is more thoroughly analyzed in
respect of its run-time, memory consumption and possible areas for improvement.

In Chapter 3 the DKSS algorithm is explained in detail and its run-time is analyzed theoretically.
Section 3.4 describes the differences between my implementation and the paper [DKSS13].

Chapter 4 presents details of the implementation and illustrates its run-time (Section 4.4),
memory requirements (Section 4.5) and source code complexity (Section 4.6) in comparison to
Schönhage and Strassen’s method both in numbers and graphics. Section 4.8 estimates the
crossover point at which both algorithms become equally fast.

Lastly, Chapter 5 sums up the results and shows possible areas for improvement together with
an assessment of their potential.

In this version of my thesis the typesetting has been modified to produce a more concise layout
and some minor errors have been corrected.



Chapter 2

Overview of Established Algorithms

This chapter covers the well established algorithms to multiply large numbers, starting with the
naive method. Methods for medium-sized numbers are discussed, the fast Fourier transform
is introduced and Schönhage-Strassen multiplication is presented in detail. But first, some
basic remarks about storage of large numbers and memory allocation for temporary storage are
necessary.

2.1 Representation of Numbers

I assume my implementation is running on a binary computer and the machine has a native
word size of w bits, so it can hold nonnegative integer values 0 . . . 2w − 1 in its general purpose
registers. We call this unit a computer word. Today, the most common word sizes are 32 and
64 bits, therefore a machine register can hold integers between 0 and 232 − 1 = 4 294 967 295 or
264 − 1 = 18 446 744 073 709 551 615, respectively.

If we want to do calculations with numbers that exceed the aforementioned range, we must use
some multiple precision representation for them. If we call W := 2w the wordbase, we can write
any nonnegative integer a < Wn as a =

∑n−1
i=0 aiW

i, with ai ∈ [0 : W − 1]. We can view this as
representing a with n words or “digits” in base W .

In my implementation a nonnegative number a < Wn is represented by an array of n words
as a = (a0, a1, . . . , an−2, an−1). The words are ordered with increasing indices in main memory.
This ordering is called little-endian. It was a design choice to use this ordering: cache prefetching
used to work better in forward loops, which are often used due to carry propagation. Modern
CPUs seem to have remedied this problem.

The same ordering is used by Schönhage et al. [SGV94, p. 7] as well as in GMP, The GNU
Multiple Precision Arithmetic Library [GMP14, sec. 16.1] and MPIR, a prominent GMP fork
[MPIR12]. Interestingly, Zuras [Zur94] describes that storing numbers as big-endian worked
better on his compiler and architecture.

The i-code in [SGV94, p. 6] stores the length n of the number after the most significant word
in main memory. In contrast, my implementation keeps the length as a separate integer and
provides both pointer to array and length as arguments on function calls.

4



Chapter 2. Overview of Established Algorithms 5

Please note that we can usually pad any number with zero words on the upper end without
influencing the result of operations (except for possible zero-padding of the result). It is a
small waste of memory and processing time, but can simplify implementation of algorithms, for
example, if an algorithm expects the length of a number to be even.

Negative numbers are represented as the two’s complement of their absolute value. I followed
the example of the i-code from [SGV94] in this design decision. It seems like a sensible choice,
since execution time of simple operations like addition and subtraction benefit from this repre-
sentation, whereas more elaborate operations like multiplication can afford the slight increase
in execution time if negative numbers are being handled.

If negative numbers are handled and padding takes place, they have to be padded with all
binary ones, that is, words with binary value −1. The most significant bit acts as sign bit if a
number is interpreted as a signed value.

2.2 Memory Management

For all but the most basic functions we will need some temporary memory. To make routines
fast, it is important that storage can be allocated and freed quickly. This forbids the use of
the regular C-style malloc() or C++ new (which is just a wrapper for the former). C-style
malloc() is designed to allow memory of different sizes to be allocated and freed at random
and still maintain low fragmentation; many implementations are even thread-safe.

Since lifetime of temporary storage in our algorithms ends when a called function returns, we
can use a stack-like model for temporary memory, which greatly simplifies the design of the
allocator, makes it fast and doesn’t need any locking. Plus, it has the added benefit of good
cache locality. This is known as region-based memory management. In my code, this allocator
is called tape_alloc.

To keep allocated memory continuous, every time memory is needed the allocator allocates
more than is requested and records the total amount of memory allocated. When afterwards
all memory is freed and later on a new allocation request is made, the allocator will right
away allocate the total amount of memory used last time. The idea is that since algorithms
often involve multiple calculations that handle long numbers in the same size-range, upcoming
memory requirements will be as they were in the past.

Schönhage et al. implemented their algorithms on a hypothetical Turing machine called TP
with six variable-length tapes and a special assembly language-like instruction set called TPAL
(see [SGV94] and [Sch]). Of course, this machine has to be emulated on a real computer, so
TPAL instructions are translated to C or assembly language for the target machine. Thus the
tape-like structure of memory is retained.

The GMP library allocates temporary memory on the stack with alloca(). This should be
fast and thread-safe, since no locking is required.
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2.3 Ordinary Multiplication

All of us have learned to multiply with pencil and paper in school. This is often referred to as
ordinary multiplication or grade school multiplication. The implementation of it is called OMUL
(this name and others are inspired by [SGV94]).

Suppose we want to multiply two nonnegative integers a and b with lengths of n and m words,
respectively, to compute the product c := ab with length n+m. To do that we have to multiply
each ai, i ∈ [0 : n − 1] with each bj , j ∈ [0 : m − 1] and add the product to ci+j , which has to
be set to zero before we start. Plus, there has to be some carry propagation.

In Python 3.x, our OMUL algorithm looks like this.† I have left out the carry propagation here,
since this example only serves to show the principle. The C++ example will be more specific.

def omul(a, b):
c = [0] * (len(a) + len(b)) # initialize result with zeros
for i in range (0, len(a)): # cycle over a

for j in range (0, len(b)): # cycle over b
c[i+j] += a[i] * b[j] # elementary mul and add

return c

This Python implementation hides an important implementation detail: If a multiple precision
number is made up of words and these are the same size as a processor register, then the product
of two such words will be twice the size of a processor register! Our code must be able to handle
this double-sized result. This is not a problem in the Python code above, since Python’s int
type is multiple precision by itself. A similar function in C++ shows more of that detail:

void omul(word* c, word* a, unsigned alen , word* b, unsigned blen) {
memset (c, 0, (alen+blen) * sizeof (word )); // set result to zero
for ( unsigned i=0; i<alen; ++i) { // loop over a[i]’s

word carry = 0; // for overflow
unsigned j = 0;
while (j < blen) { // loop over b[j]’s

carry = muladdc (c[i+j], a[i], b[j], carry );
++j;

}
c[i+j] = carry ;

}
}

The type word is a placeholder for an unsigned integer type with the size of a processor word or
smaller. The interesting part happens in the function muladdc(): a[i] and b[j] get multiplied,
the input carry carry and the already computed result c[i+j] are added to the product, the
lower part of the result is written back to memory (into c[i+j]) and the higher part of the
result is saved in carry to be handled in the next iteration.

We have not yet addressed the problem of the double-sized multiplication result. We have two
choices here: either use a word type that is only half the processor word size, so the product
can be stored in a full processor word, or use some special function to get both the high and
low part of a full sized multiplication in two separate variables. Luckily, modern compilers offer
an intrinsic function for that and compile good code from it. The other option is still available,
but takes about 60 % more time here for inputs of the same bit-size.‡

†The coding style is very un-pythonic and should only serve for explanation.
‡All timings are expressed in processor cycles and were done on an Intel Core i7-3770 CPU in 64-bit mode

running Windows 7. Appendix A describes the test setup in detail.
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For a 64-bit word type in Microsoft Visual C++, the muladdc() function looks like this:

typedef unsigned __int64 uint64 ; // keep it short
uint64 muladdc ( uint64 & mem , uint64 a, uint64 b, uint64 carry_in ) {

uint64 hiprod ;
uint64 lowprod = _umul128 (a, b, & hiprod ); // intrinsic function
hiprod += addc(mem , lowprod , carry_in );
return hiprod ; // carry out

}

uint64 addc( uint64 & mem , uint64 v, uint64 carry_in ) {
uint64 r1 = mem + v;
uint64 carry_out = r1 < v; // overflow ?
uint64 r2 = r1 + carry_in ;
carry_out += r2 < carry_in ; // overflow ?
mem = r2;
return carry_out ;

}

Again, we have to wrestle with word size limitation when handling overflow from addition in
addc(). Unfortunately, Microsoft’s C++ compiler doesn’t offer a way to read the processor’s
carry flag. So, we have to do an additional comparison of the result with one of the inputs to
determine overflow [War02, p. 29]. The resulting code is surprisingly fast, despite the superfluous
comparison.

The total run-time of OMUL is easily determined: we have to do nm word-to-doubleword mul-
tiplications, since each ai has to be multiplied by each bj . The number of additions depends
on the implementation: the Python version has nm additions, but they are at least triple-size,
since the carries accumulate. The C++ version has four word-sized additions per multiplication.

In either case, the total run-time is O(nm), and assuming m = n it is O(n2).
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Figure 1: Execution time of OMUL



8 Chapter 2. Overview of Established Algorithms

This is the “classical” time bound and even in 1956 it was still conjectured to be optimal, since
no one had found a faster way to multiply for more than four millennia [Kar95].

Figure 1 shows a double-logarithmic graphical display of execution times in processor cycles for
different input sizes. Observe the slight bend at the beginning, which shows the constant costs
of calls and loop setup. Apart from that the graph is very straight, which shows that caching
has no big influence, even though the highest input sizes well exceed the level 1 and level 2
cache sizes on the test machine.

2.4 Karatsuba Multiplication

Let a, b < W 2n be two nonnegative integers, that is, both numbers consist of maximum 2n words.
We are looking for a faster way to multiply both numbers to get their product c = ab < W 4n.

We can “cut” both numbers in half, that is, express them as

a = a0 + a1W
n and b = b0 + b1W

n, (2.1)

with a0, a1, b0, b1 < Wn. The classical approach to calculate the full product from its four
half-sized inputs is

ab = (a0 + a1W
n)(b0 + b1W

n)
= a0b0 + (a0b1 + a1b0)Wn + a1b1W

2n. (2.2)

This way, we can break down a single 2n-word multiplication into four n-word multiplications.
Unfortunately, we don’t gain any speed by this.

In 1960 Karatsuba found a faster way to multiply long numbers [KO63]. The following slightly
improved version is due to Knuth [Knu97b, p. 295]. The implementation of it is called KMUL.

First, we compute the following three n-word multiplications

P0 = a0b0

P1 = (a0 − a1)(b0 − b1)
P2 = a1b1

and use these three “small” products to recover the full product with only some extra additions
and subtractions plus shifts (multiplications by powers of W ):

ab = P0(1 +Wn)− P1W
n + P2(Wn +W 2n) (2.3)

= a0b0(1 +Wn)− (a0 − a1)(b0 − b1)Wn + a1b1(Wn +W 2n)
= a0b0 + a0b0W

n − a0b0W
n + a0b1W

n + a1b0W
n − a1b1W

n +
a1b1W

n + a1b1W
2n

= a0b0 + (a0b1 + a1b0)Wn + a1b1W
2n.

It looks like more work, but it is a real improvement. Since ordinary multiplication runs in
O(n2), saving multiplications at the cost of additions, subtractions and shifts, which can be
done in linear time, is a good deal in itself. But if we use Karatsuba’s algorithm recursively, we
can even achieve a time bound of O(nlog 3) ≈ O(n1.585).
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We are going to prove this bound by induction. Denote T (n) the time it takes to multiply
two n-word numbers. We know that we can reduce a 2n-word multiplication to three n-word
multiplications and some operations with linear run-time. Furthermore, we have to assign some
cost to T (1). So

T (1) = c,

T (2n) = 3T (n) + 2cn.

We are going to show that
T (n) = 3cnlog 3 − 2cn.

This proof originates from [AHU74, p. 63]. It is easy to check the induction basis: T (1) =
3c · 1log 3 − 2c · 1 = c. Next, we have to check the induction step:

T (2n) = 3T (n) + 2cn
= 3(3cnlog 3 − 2cn) + 2cn
= 3c(3nlog 3)− 6cn+ 2cn
= 3c(3nlog 3)− 2c(2n)
= 3c(2log 3nlog 3)− 2c(2n)
= 3c(2n)log 3 − 2c(2n).

If we implement this procedure, we first compute the three products P0, P1, P2 and then use
(2.3) to shift and add up the small products to get the full product. That means, we need some
temporary storage for the small products and for the two factors that make up P1.

To compute the two factors (a0−a1) and (b0− b1) we would like to avoid working with negative
numbers, to keep things simple. To that end I use a knack (borrowed from GMP) and compare
the minuend and subtrahend of the subtraction, always subtract the smaller from the larger
and keep the sign bit in an extra variable. The implementation accommodates for the sign bit
later when it re-assembles the three sub-products.

The mentioned ideas look like this when coded in C++:

void kmul(word* r, word* a, unsigned alen , word* b, unsigned blen) {
if (alen < blen) { // b must not be longer than a

swap(a, b), // swap pointers
swap(alen , blen );

}
if (blen < kmul_thresh ) { // inputs too short ?

omul(r, a, alen , b, blen ); // use omul
return ;

}
unsigned llen = blen / 2; // low part length
unsigned ahlen = alen - llen; // a high part length
unsigned bhlen = blen - llen; // b high part length

// compute r0 = a0 * b0: this will lie in ’r’ on index 0.. llen -1
kmul(r, a, llen , b, llen );
// compute r2 = a1 * b1: this will lie in ’r’ on index 2* llen .. alen +blen -1
kmul(r+2* llen , a+llen , ahlen , b+llen , bhlen );

// allocate temporary space for differences and third mul
tape_alloc tmp (4* ahlen + 1);
word* sa = tmp.p;
word* sb = tmp.p + ahlen ;
word* ps = tmp.p + 2* ahlen ;

// subtract values for later multiplication
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bool asign = compu_nn (a+llen , ahlen , a, llen) < 0; // asign set if a1 < a0
if ( asign ) subu(sa , ahlen , a, llen , a+llen , ahlen ); // a0 - a1 > 0
else subu(sa , ahlen , a+llen , ahlen , a, llen ); // a1 - a0 >= 0

bool bsign = compu_nn (b+llen , bhlen , b, llen) < 0; // bsign set if b1 < b0
if ( bsign ) subu(sb , ahlen , b, llen , b+llen , bhlen ); // b0 - b1 > 0
else subu(sb , ahlen , b+llen , bhlen , b, llen ); // b1 - b0 >= 0

// multiply both absolute differences
unsigned plen = 2* ahlen + 1; // there can be a carry
kmul(ps , sa , ahlen , sb , ahlen );
ps[plen -1] = 0;

// compute middle result
if ( asign == bsign ) subu_on_neg (ps , plen , r, 2* llen ); // ps = r0 - ps
else addu_on (ps , plen , r, 2* llen ); // ps += r0
addu_on (ps , plen , r + 2* llen , ahlen + bhlen ); // ps += r2
// add the final temp into the result
addu_on (r+llen , ahlen + blen , ps , plen );

}

The code checks if input sizes suggest OMUL will be faster and if so, calls it instead. This is
because KMUL is asymptotically faster than OMUL, but not so for small input lengths. Obviously,
KMUL is more complicated than OMUL, as it uses several calls to add and subtract, conditional
branches and temporary memory. All this takes its time compared to a very streamlined double-
loop structure of OMUL that modern processors are really good at executing.

To achieve maximum performance we have to find the input length where KMUL starts to be
faster than OMUL. This is called the crossover point or threshold value. The crossover point
depends on the processor architecture, memory speed and efficiency of the implementation. To
find the crossover point we have to benchmark both algorithms against one another at various
input lengths.
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Figure 2: Execution time of KMUL
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Figure 3: Execution time of KMUL (close-up)

Figure 2 shows the timings of OMUL and KMUL. We can see that KMUL is faster the longer the
inputs are (with an input length of 10 000 words KMUL is about nine times faster than OMUL),
but in the low ranges it is slower than OMUL.

To have a better look at the crossover point, Figure 3 has linear scaling and shows only input
sizes up to 60 words. From the graph we can see the crossover point is at about 24 words input
length, that is, about 460 decimal digits.

2.5 Toom-Cook Multiplication

Let us take a broader look at Karatsuba’s algorithm: it follows from the fundamental theorem of
algebra that any polynomial a(x) of degree < k is determined by its values at k distinct points.
In the case of Karatsuba’s algorithm, if we substitute Wn in (2.1) with the indeterminate x we
get input polynomials of degree one: a(x) = a0 + a1x and b(x) = b0 + b1x. If we multiply both,
the result c(x) := a(x)b(x) is a polynomial of degree two.

What we did in Karatsuba multiplication can be understood as evaluating both polynomials
a(x) and b(x) at points {0,−1,∞}.†,‡ Then we multiplied the results pointwise and interpolated
to regain the polynomial c(x). To regain the integer result we evaluated c(x) at x = Wn.

We can generalize this technique: evaluate polynomials of degree < k at 2k − 1 distinct points,
multiply pointwise and interpolate. The time bound of this scheme is O(nlogk(2k−1)), so for
k = 3, 4, 5 it is approximately O(n1.465), O(n1.404) and O(n1.365), respectively. This method is
due to Toom [Too63] and Cook [Coo66].

†By abuse of notation a(∞) means limx→∞ a(x)/x and gives the highest coefficient.
‡Other distinct points of evaluation would have done as well. For example, Karatsuba’s original paper used

{0, 1,∞}.
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Figure 4: Execution time of T3MUL

The points for evaluation can be freely chosen (as long as they are distinct), but it is not obvious
which choice leads to the simplest formulas for evaluation and interpolation. Zuras [Zur94] and
Bodrato [BZ06] offer good solutions.

I implemented the Toom-Cook 3-way method from [BZ06] and called it T3MUL. Figure 4 shows
a graph of execution time vs. input length. The crossover point of T3MUL and KMUL is at about
100 words or 2000 decimal digits.

Unfortunately, the exponent in the time bound drops slowly as k increases and the number of
linear operations (additions, subtractions and divisions by constants) rises quickly with k. This
leads to ever higher crossover points. Furthermore, each new k-way method has to be set in
code individually. This calls for a more general solution.

2.6 The Fast Fourier Transform

We are going to have a look at the fast Fourier transform (or FFT ) which was (re-)discovered
in 1965 by Cooley and Tukey [CT65]. By choosing to evaluate the polynomial at certain special
points it allows us to do the evaluation very quickly.

This is just a short description of the fast Fourier transform as far as it concerns us now. A
good introduction can be found in Cormen et al. [CLRS09, ch. 30], Clausen and Baum [CB93]
cover the topic from a group-theoretic standpoint and Duhamel and Vetterli [DV90] present a
good overview of the plethora of different FFT algorithms.
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Let R be a commutative ring with unity and let n be a power of 2.† The number n is called
the FFT length. Let ωn be a primitive n-th root of unity in R, that is, ωnn = 1 and ωkn 6= 1 for
k ∈ [1 : n − 1]. We simply write ω instead of ωn, if the value of n is clear from the context.
Furthermore, let a(x) =

∑n−1
j=0 ajx

j be a polynomial over R with degree-bound n.‡

For example, R contains only a primitive 2nd root of unity, namely −1, but no higher orders.
But C does: ωn = e2πi/n is a primitive n-th root of unity in C.

Another example is the quotient ring Z/nZ: it can be identified with the integers from 0 to
n−1, where all operations are executed modulo n. Z/nZ can contain up to n−1 roots of unity.
In the case of n = 17, ω = 3 is a primitive 16th root of unity.

We want to evaluate a(x) at n distinct, but otherwise arbitrary points. If we choose to evaluate
a(x) at ωk, k ∈ [0 : n − 1], we can design the evaluation particularly efficient. Because ω is a
primitive n-th root of unity, we know ω0, ω1, . . . , ωn−1 to be pairwise different.

We can re-sort a(x) in even and odd powers and rewrite it as

a(x) = a0 + a1x+ a2x
2 + a3x

3 + . . .

= a0 + a2x
2 + . . .+ a1x+ a3x

3 + . . .

= a0 + a2x
2 + . . .︸ ︷︷ ︸

=:e(x2)

+ x(a1 + a3x
2 + . . .︸ ︷︷ ︸

=:o(x2)

)

= e(x2) + xo(x2),

where e(x) and o(x) are polynomials with half the degree-bound as a(x). Since n is a power
of 2, we can proceed recursively with this divide-and-conquer approach until the degree-bound
of both polynomials e(x) and o(x) is one, that is, both consist only of a constant.

We can evaluate a(x) at ωk, k ∈ [0 : n/2− 1] and get

a(ωk) = e(ω2k) + ωko(ω2k).

But note what we get if we evaluate a(x) at ωk+n/2, k ∈ [0 : n/2− 1]:

a(ωk+n/2) = e((ωk+n/2)2) + ωk+n/2o((ωk+n/2)2)
= e(ω2k+n) + ωk+n/2o(ω2k+n)
= e(ω2k)− ωko(ω2k),

since ωn/2 = −1 and ωn = 1.

If we have already computed e(ω2k) and o(ω2k) we save time by calculating both a(ωk) and
a(ωk+n/2) side by side:

a(ωk) = e(ω2k) + ωko(ω2k)
a(ωk+n/2) = e(ω2k)− ωko(ω2k).

This is the concept that makes the fast Fourier transform efficient. After solving both halves of
the problem we can calculate two results in O(1) additional time.§

†Please note that n no longer designates an input length in words.
‡Any integer n > deg(a) is called a degree-bound of a.
§The simultaneous calculation of sum and difference is called a butterfly operation and the factors ωk in front

of o(ω2k) are often called twiddle factors.
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There are different types of FFTs and the one just described is called a Cooley-Tukey FFT of
length n. More precisely, it is a radix-2 decimation in time FFT. See [DV90] for other types of
FFTs.

We can write this algorithm as a recursive function in Python. The computation of the actual
root of unity has been left out of this example to keep it independent of the ring R.

def fft(a): # a is a list
n = len(a) # degree - bound of a
if n <= 1: return a
even = fft(a [0::2]) # slice up even numbered values
odd = fft(a [1::2]) # ... and odd
r = [0] * n # fill list with n dummies
for k in range (0, n //2): # n //2 means integer divide

w = root_of_unity (n, k) # n-th root to k-th power
r[k] = even[k] + w * odd[k]
r[k+n//2] = even[k] - w * odd[k]

return r

Since at each recursion level the input list is split into values with even and odd indices, we get
the structure shown in Figure 5, if we assume a start with eight input values.

Notice the ordering of the indices at the lowest level: the values are at an index which is the
bit-reversed input index. “Bit-reversed” here means only reversing the bits that are actually
used in indexing: in the last example we had eight values, hence we needed 3 bits for indexing.
Accordingly, the bit-reversed index of, for example, a3 = a011b is 110b = 6.

The bit-reversal is a consequence of the splitting of the array into even and odd indices. Since
even indices have the lowest bit set to zero, all “left” members of the output array have the
highest bit of the index set to zero, whereas all “right” members have odd indices and have the
highest bit set to one. This repeats itself through all levels.

We use this observation to decrease the memory footprint: the fft() function listed above uses
temporary memory at each level, first to split up the input in even and odd indexed values and
then to create the list of return values. We would like to save those allocations. Luckily, that is
possible. The following design and the term “shuffle” is taken from Sedgewick [Sed92, ch. 41].

If we reorder the input list according to its bit-reversed indices, all even indexed values are in
the first half and all odd indexed values in the second half. This saves us the creation of function
arguments for the recursive calls. All we need to hand over to the lower levels is the position

(a0, a1, a2, a3, a4, a5, a6, a7)

(a0, a2, a4, a6)

(a0, a4)

(a0) (a4)

(a2, a6)

(a2) (a6)

(a1, a3, a5, a7)

(a1, a5)

(a1) (a5)

(a3, a7)

(a3) (a7)

Figure 5: Splitting an array into even and odd positions
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and length in the array they should work on, since the values are already in the right order.
Then the tree of function arguments looks like Figure 6.

We don’t even need extra storage for the return values! We can use the memory of the input
parameters and overwrite it with the return values; the input parameters are no longer needed
after the function has calculated the return values from them.

If we put all this into code, our Python function looks like this:

def bit_rev (x, b): # reverse b lower bits of x
return sum (1<<(b-1-i) for i in range (0, b) if (x>>i) & 1)

def shuffle (a): # shuffle input list a
r = [] # empty list
b = (len(a) -1). bit_length () # bits used for indexing
pos = [ bit_rev (n, b)

for n in range (0, len(a))] # list of new positions
for i in pos: # cycle through list of positions

r. append (a[i]) # ... and build return list
return r

def fft_eval (a, pos , n): # work on a[pos .. pos+n -1]
half = n//2 # integer divide
if half > 1:

fft_eval (a, pos , half) # even part
fft_eval (a, pos+half , half) # odd part

for k in range (0, half ):
w = root_of_unity (n, k) # n-th root to k-th power
t = w * a[pos+half+k] # multiply only once
a[pos+half+k] = a[pos+k] - t # must use this order
a[pos+k] = a[pos+k] + t # ... to avoid overwriting

return

def fft_inplace (a):
aa = shuffle (a) # create reordered a
fft_eval (aa , 0, len(aa )) # fft works in - place
return aa

Let us analyze the number of arithmetic operations of the algorithm above. We have assumed
that n is a power of 2. With each level the length of the input is halved until n = 1; this
leads to logn levels of recursion. Furthermore, while the number n gets halved with each
level, both halves are worked on, so all values are cycled over (see Figure 6). Since two return
values are calculated with three arithmetic operations (two additions and one multiplication),
the arithmetic cost per level is 3n/2, which leads to a total cost for the whole operation of
T (n) = 3n/2 · logn.

(a0, a4, a2, a6, a1, a5, a3, a7)

(a0, a4, a2, a6)

(a0, a4)

(a0) (a4)

(a2, a6)

(a2) (a6)

(a1, a5, a3, a7)

(a1, a5)

(a1) (a5)

(a3, a7)

(a3) (a7)

Figure 6: Halving the already shuffled array
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We can prove the run-time more formally (inspired by [Sed92, pp. 77–78]). Obviously, T (1) = 0.
Then the total arithmetic cost is

T (n) = 2T (n/2) + 3n/2
= 2(2T (n/4) + 3n/4) + 3n/2
= 4T (n/4) + 3n/2 + 3n/2
...

= 2lognT (n/2logn) + 3n/2 · logn
= nT (1) + 3n/2 · logn
= 3n/2 · logn. (2.4)

2.7 FFT-based Polynomial Multiplication

Now that we have introduced the fast Fourier transform and proved its run-time, let us see how
we can use it to multiply two polynomials rapidly.

Let R be a commutative ring with unity and let n be a power of 2. Let ω be a primitive n-th
root of unity in R. Furthermore, let a(x) =

∑n/2−1
j=0 ajx

j and b(x) =
∑n/2−1
j=0 bjx

j be polynomials
over R.

Please note that the polynomials a(x) and b(x) have a degree-bound of n/2. Since we are about
to compute c(x) := a(x)b(x) we need to choose the number of sample points n as n > deg(c) =
deg(a) + deg(b). To keep notation simple, we let aj = bj = 0 for j ∈ [n/2 : n− 1].

We evaluate both input polynomials at sample points ωk, k ∈ [0 : n − 1] to get sample values
âk := a(ωk) and b̂k := b(ωk). Then, we multiply the sample values pairwise to get the ĉk := âk b̂k.
But how to retrieve the result polynomial c(x) from the ĉk? We will see how to accomplish that
with ease if R, n and ω meet two additional requirements:

• ωk − 1, k ∈ [1 : n− 1], must not be a zero divisor in R, and (2.5)

• n must be a unit in R, meaning n is invertible. (2.6)

We return to these requirements later. Assuming that they hold, we can prove that the same
algorithm can be used on the ĉk to regain the cj that was used to compute the âk and b̂k in the
first place! That is to say: the Fourier transform is almost self-inverse, except for ordering of
the coefficients and scaling.

Let us see what happens if we use the âk = a(ωk) =
∑n−1
j=0 ajω

kj as coefficients of the polynomial
â(x) :=

∑n−1
k=0 âkx

k and evaluate â(x) at ω`, ` ∈ [0 : n − 1], to compute ̂̂a` := â(ω`). We get
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what is called an inverse transform:

̂̂a` = â(ω`)

=
n−1∑
k=0

âkω
`k

=
n−1∑
k=0

( n−1∑
j=0

ajω
kj)ω`k

=
n−1∑
j=0

n−1∑
k=0

ajω
(j+`)k

=
n−1∑
j=0

aj

n−1∑
k=0

(ωj+`)k

= n · a(−`) mod n.

The last line holds due to the sum of the geometric series:

n−1∑
k=0

(ωj+`)k =


ω(j+`)n − 1
ωj+` − 1 = 0 if j + ` 6≡ 0 (mod n), (2.7)

n−1∑
k=0

1 = n if j + ` ≡ 0 (mod n). (2.8)

Now we see why (2.5) is required: if ωk−1, for k ∈ [1 : n−1], is a zero divisor we are not allowed
to do the division in (2.7). Furthermore, to remove the factor n in front of every a(−`) mod n we
need (2.6).

If we want to get the ̂̂a` in the same order as the original aj , we can simply evaluate â(x) at
ω−` instead of ω`. This is called a backwards transform.

To summarize: we can evaluate the ĉk at points ω−` to retrieve n · c`, divide by n and have thus
recovered the coefficients of our desired product polynomial.

The overall arithmetic cost of this polynomial multiplication method is three FFTs in O(n logn)
plus n multiplications of pairs of sample values in O(n) plus n normalizations in O(n). The
FFTs dominate the total cost, so it is O(n logn).

2.8 Modular FFT-based Multiplication

We can put last section’s method into action and design a fast multiplication algorithm for long
numbers using the quotient ring R = Z/pZ, with prime p. This is sometimes called a number
theoretic transform or NTT. According to [Knu97b, p. 306] this method goes back to Strassen
in 1968.

We want to multiply nonnegative integers a and b to get the product c := ab. We are free
to choose an arbitrary p for our calculations, as long as last section’s requirements are met.
Furthermore, our choice of p should be well suited for implementation. If we choose p to be
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prime it means that the ring Z/pZ is even a field, so we are sure to meet requirements (2.5) and
(2.6). This field is denoted Fp.

For the FFTs we need roots of unity of sufficiently high degree. Let p > 3. Since p is prime, we
know that F∗p = {1, 2, 3, . . . , p− 1} is a cyclic multiplicative group of order p− 1. We call g ∈ F∗p
a generator of F∗p if its powers gj , j ∈ [0 : p− 2], create the whole group. Also, g is a primitive
(p− 1)-th root of unity. Note that gp−1 = g0 = 1.

F∗p contains p−1 elements. Since p−1 is even, we can find integers u, v > 1, such that p−1 = uv.
Without loss of generality, let v be a power of 2. We know that gp−1 = 1, hence guv = (gu)v = 1.
Since v divides p− 1, we know gu is a v-th primitive root of unity in F∗p.

Let us see how to reduce a long multiplication to polynomial multiplication: we have to distribute
the bits of input numbers a and b to coefficients of polynomials a(x) and b(x). In Karatsuba’s
algorithm we did cut the input numbers in two pieces of n words each, or wn bits, where w is
the word size and W = 2w is the wordbase. Accordingly, evaluating polynomial a(x) at Wn

yielded number a. Now we are going to cut the input numbers into pieces of r bits. But how
to choose r?

The larger r is, the less coefficients we get, that is, the lower the degree of the polynomial. In
consequence, this can lead to smaller FFT lengths, which are faster to compute. This is why
we want to choose r as large as possible.

If we multiply polynomials a(x) =
∑n/2−1
j=0 ajx

j and b(x) =
∑n/2−1
k=0 bkx

k to get product c(x) :=
a(x)b(x) =

∑n−2
`=0 c`x

` with c` =
∑
j+k=` ajbk, observe that c` can contain up to n/2 summands.

By construction aj , bk < 2r, hence c` < n
2 (2r)2 = n22r−1. But c` must also be less than p.

Hence, our choice of p must make sure that

p ≥ n22r−1. (2.9)

For practical reasons, we want to choose a prime p that can be handled easily by the target
machine’s processor, hence I chose p to be almost as big as the wordbase, so it can still be stored
in one machine word. “Almost” means blog pc = w− 1 to maximize the use of available bits per
word.

The above mentioned constrains led me to choose the following parameters:†

Word size (bits) Modulus p Composition of p Generator g
8 193 3 · 26 + 1 5
16 40 961 5 · 213 + 1 3
32 3 489 660 929 13 · 228 + 1 3
64 10 232 178 353 385 766 913 71 · 257 + 1 3

†I reproduce the numbers here, since it required some effort to calculate them. If one wants to do FFT with
modular arithmetic, one must first find a suitable prime modulus p and a matching primitive n-th root of unity.
So here they are.
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From these numbers we can calculate the respective primitive n-th root of unity ω:

Word size (bits) Order n of primitive root ω Primitive n-th root ω
8 26 53 = 125
16 213 35 = 243
32 228 313 = 1 594 323
64 257 371 = 3 419 711 604 162 223 203

Now that we have chosen p, we can use (2.9) to calculate the maximum r for a given FFT
length n:

n22r−1 ≤ p
log(n22r−1) ≤ log p

logn+ 2r − 1 ≤ log p
2r ≤ log p− logn+ 1

r ≤ 1
2(log p− logn+ 1)

Choosing r determines the degree of the polynomials and hence n, which in turn can have an
influence on r. So, we might have to cycle several times over this formula to find the largest r
and smallest n.

Please note that this also imposes an upper bound on the length of input numbers this algorithm
can handle:

logn+ 2r − 1 ≤ log p
logn ≤ log p− 2r + 1
logn ≤ w − 2r (since blog pc = w − 1)
logn ≤ w − 2 (r has to be at least 1)

n ≤ 2w−2

n ≤W/4.

This determines the maximum FFT length. In this case, r was 1 bit and hence the maximum
output length is W/4 bits or W/32 bytes. Choosing a larger r only makes matters worse. The
maximum FFT length might be even less than that, since the order of ω limits the FFT length
as well.

Now that we have chosen the necessary parameters, we can attend to the implementation. A
Python version of the main routine looks pretty straightforward. I termed this function QMUL,
alluding to QuickMul by Yap and Li [YL00].

def qmul(a, b):
p, n, w, r = select_param (a, b) # p: prime modulus , n: FFT length

# w: n-th root , r: bits per coefficient
al = split_input (a, p, r, n) # split inputs into n parts , ...
bl = split_input (b, p, r, n) # ... each maximum r bits long

al = shuffle (al) # shuffle inputs
bl = shuffle (bl)

fft_eval (al , 0, n, w) # evaluate inputs at roots of unity
fft_eval (bl , 0, n, w)
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cl = [] # empty list
for i in range (0, n): # multiply pointwise

cl. append (al[i] * bl[i]) # append to list

cl = shuffle (cl) # shuffle result
fft_eval (cl , 0, n, w) # evaluate result

inv = modinv (n, p) # normalize result
for i in range (0, n):

cl[i] *= inv

c = reasm (cl , r) # reassemble result
return c

The functions fft_eval() and shuffle() have already been shown. Functions reasm() and
split_input() are new: they cut up the input numbers and add up the coefficients of the
resulting polynomial to a number, respectively. To find the proper number of bits per coefficient
r and compute the FFT length n and matching root w function select_param() is used.

The actual implementation I used for benchmarking was done in C++. To give an impression
of the code, the following function is a simplified version of the evaluation. The actual code is
more complicated, since I use C++ templates to unroll the last five levels of the FFT. This saves
some call and loop overhead at the cost of code size.

void qmul_evaluate (word* p, unsigned i, unsigned lg) {
unsigned n = 1 << lg; // number of values
unsigned half = n/2; // half of them
if (half > 1) {

qmul_evaluate (p, i, lg -1); // even part
qmul_evaluate (p, i+half , lg -1); // odd part

}

// w ^0=1: no multiplication needed
word t = p[i+half ];
p[i+half] = modsub (p[i], t);
p[i] = modadd (p[i], t);

// handle w^k, k >0
word* pw = pre_w [lg ]; // use precomputed roots
for ( unsigned k=1; k<half; ++k) {

word t = modmul (pw[k], p[i+half+k]);
p[i+half+k] = modsub (p[i+k], t);
p[i+k] = modadd (p[i+k], t);

}
}

Functions modadd() and modsub() are pretty straightforward and I don’t include them here,
but modmul() is more complicated. It takes two 64-bit numbers as inputs and multiplies them
modulo p. We recall that there is an intrinsic compiler function to do the multiplication, but
the result has 128 bits and has to be reduced modulo p. To accomplish that, we could use a
128-by-64-bit division, but it is quite slow and takes up to 75 cycles.

Warren [War02, pp. 178–188] shows a solution how to replace a division by a constant with a
multiplication and a shift. Since the input has 128 bits, the multiplication has to be 128-bit
wide as well. But this only results in floor division. To get the rest from division we must do
one more multiplication and one subtraction. In total, we have to do six 64-bit multiplications,
plus some additions and shifts to do the one modular multiplication. Benchmarking shows that
the whole modular multiplication can be done like that in about 10 cycles.
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Figure 7: Execution time of QMUL

To save the time needed to calculate the roots of unity, I use arrays of precomputed roots
pre_w[lg]. These powers are independent of the inputs and are reused every time QMUL is
used.

A graph of execution cycles of QMUL in comparison to T3MUL is presented in Figure 7. Please
note that this graph covers a wider range of sizes than the previous graphs. We see that our
new algorithm is asymptotically faster than the hitherto used T3MUL implementation.

The stair-like shape of the graph is a result of the FFT: if input numbers get too large, the FFT
depth must be increased by one level, thereby doubling the number of evaluation points. From
these graphs we can say that QMUL starts to outperform T3MUL for inputs with a length of about
110 000 words or more, that is, about 2 100 000 decimal digits.

So we found an algorithm with a good asymptotic cost, but it only starts to pay off if inputs
are quite long. Why is that so? What are the weak points of QMUL?

• The modular multiplication and reductions are expensive. Six word-sized multiplications
are not cheap.

• The FFT length is large and hence many extra bits room for the sum of the coefficient
products must be left free. Since the unit of operation is only a processor word, this “eats
up” quite some percentage of its size. Plus, it implies a large FFT depth as well.

• The maximum length for long numbers is limited to W/32 bytes, even if larger numbers
could be handled by the machine.

The following celebrated algorithm will address all of the weak points listed above.
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2.9 Modular Schönhage-Strassen Multiplication

The idea of Schönhage-Strassen multiplication (of which my implementation is called SMUL) is
to perform FFTs in rings of the form Z/(2K + 1)Z, which are sometimes called Fermat rings.
In Fermat rings, 2 is a primitive 2K-th root of unity. This fact can be exploited to speed
up multiplications by roots of unity during the FFTs: multiplications by powers of 2 can be
implemented as shifts followed by a modular reduction and thus take only O(K) time. This is
the cornerstone of the efficiency of Schönhage and Strassen’s multiplication.

Since all roots of unity are powers of 2, we don’t need to precompute them as in QMUL, but can
just keep track of shift counts. Furthermore, modular reductions are simple and can be done
with just another long number addition and/or subtraction. In this context, a shift followed by
a modular reduction is called a cyclic shift.

SMUL always computes the product modulo 2N +1, where N can be chosen. If we multiply input
numbers a and b to get c := ab, we have to provide an N that is big enough to hold the full
result. SMUL reduces a multiplication with N bits to smaller multiplications of K ≈

√
N bits, in

contrast to a reduction to word size as in QMUL.† If the size of pointwise multiplications exceeds
a certain threshold, SMUL is used recursively, otherwise a simpler algorithm takes over.

This algorithm was first published by Schönhage and Strassen in 1971 [SS71] and provided
results modulo 2N + 1, where N itself is a power of 2. A later version published by Schönhage
[Sch82] relaxes the requirement to “suitable numbers” of the form N = ν2n, ν ∈ [n−1 : 2n−1].
For the implementation we can relax the requirement even more: Section 2.9.3 lists the details.

We introduce some notation: to compute the product c of nonnegative numbers a and b, we do
FFTs in the ring R := Z/(2K + 1)Z. We use a Cooley-Tukey FFT and thus the FFT length
n has to be a power of 2. Since we can choose R (and hence K) to suit our needs, we choose
K = r2m, with positive integers r and m. Our choice of K and m will in turn determine N ,
where N = s2m, with positive integer s. This s is the number of input bits per coefficient.

It it easy to see that 2 is a primitive 2K-th root of unity: since 2K + 1 ≡ 0, we have 2K ≡ −1
and hence 22K ≡ 1. Furthermore, it is obvious that for u ∈ [1 : K − 1] we get 2u 6≡ ±1. For
K + v =: u ∈ [K + 1 : 2K − 1] we see that 2u = 2K+v = 2K2v = −2v 6≡ 1.

Because the FFT length is a power of 2, we need a primitive root of unity of the same order.
Since 2 is a primitive root of unity of order 2K = 2r2m, it holds that 1 ≡ 22K = 22r2m = (22r)2m .
This makes ω := 22r a primitive 2m-th root of unity and the FFT length n := 2m. We deliberately
chose an even exponent for ω, since we will be needing

√
ω later.

2.9.1 Invertibility of the Transform

For the existence of the inverse FFT requirements (2.5) and (2.6) have to be met. Since 2K + 1
may not be prime, we cannot rely on our argument from Section 2.8, so we must show that the
requirements are met here, too:

• With ω = 22r, ωj−1, j ∈ [1 : n−1], must not be a zero divisor in Z/(2K +1)Z, and (2.10)
†A reduction to word size is usually not possible in SMUL, because the FFT length is not sufficiently large to

cut input numbers in parts so small, since there are not enough roots of unity.
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• n = 2m must be a unit in Z/(2K + 1)Z. (2.11)

To prove (2.10) we need some identities about the greatest common divisor (gcd): Let a, b
and u be positive integers and (a, b) signify the greatest common divisor of a and b. Then the
following identities hold:

(a, b) = (b, a), (2.12)
(a, b) = (a− b, b), if a ≥ b, (2.13)

(ua, ub) = u(a, b), (2.14)
(ua, b) = (u, b)(a, b), if (u, a) = 1, (2.15)
(ua, b) = (a, b), if u - b, (2.16)

(2a − 1, 2b − 1) = 2(a,b) − 1, (2.17)
(2a − 1, 2a + 1) = 1, (2.18)

(2a − 1, 2b + 1) = 2(a,2b) − 1
2(a,b) − 1

. (2.19)

Identities (2.12) – (2.16) are well known, so we don’t prove them here.

We prove (2.17) by induction on a + b. We assume without loss of generality that a ≥ b. The
induction basis is easily checked: (21 − 1, 21 − 1) = 1 = 2(1,1) − 1.

Now we show the induction step: we assume (2α− 1, 2β − 1) = 2(α,β)− 1, for α+ β < a+ b. We
use (2.13) and get

(2a − 1, 2b − 1) = (2a − 1− (2b − 1), 2b − 1)
= (2a − 2b, 2b − 1)
= (2b(2a−b − 1), 2b − 1)
= (2a−b − 1, 2b − 1) (by (2.16))
= 2(a−b,b) − 1 (by IH)
= 2(a,b) − 1. (by (2.13))

To prove (2.18) we use (2.13) and see that

(2b − 1, 2b + 1) = (2b − 1, 2b + 1− (2b − 1))
= (2b − 1, 2)
= 1.

To prove (2.19) we use the well known difference of squares a2 − b2 = (a+ b)(a− b) and apply
it to our case, where it yields 22b − 1 = (2b + 1)(2b − 1). It holds that

2(a,2b) − 1 = (2a − 1, 22b − 1) (by (2.17))
= (2a − 1, (2b + 1)(2b − 1))
= (2a − 1, 2b + 1)(2a − 1, 2b − 1) (by (2.15) and (2.18))
= (2a − 1, 2b + 1)(2(a,b) − 1)
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Divide by 2(a,b) − 1 and get

2(a,2b) − 1
2(a,b) − 1

= (2a − 1, 2b + 1).

Recalling that ω = 22r, n = 2m and K = r2m we can now prove (2.10) by showing that
(ωj − 1, 2K + 1) = 1, for j ∈ [1 : n− 1]. Thus all ωj − 1 are units and therefore no zero divisors.

(ωj − 1, 2K + 1) = ((22r)j − 1, 2r2m+ 1)
= (22rj − 1, 2r2m+ 1)

= 2(2rj,2r2m) − 1
2(2rj,r2m) − 1

(by (2.19))

= 22r(j,2m) − 1
22r(j,2m−1) − 1

. (by (2.14))

Since j < 2m it is clear that (j, 2m) = (j, 2m−1). Hence

(ωj − 1, 2K + 1) = 22r(j,2m−1) − 1
22r(j,2m−1) − 1

= 1.

Still open is (2.11). For n = 2m to be a unit in Z/(2K + 1)Z, there must exist an i with
2mi ≡ 1 ≡ 22K . Obviously, i = 22K−m works.

2.9.2 Convolutions

Schönhage-Strassen multiplication always computes results modulo 2N + 1. If it is used recur-
sively to compute the pointwise products this comes in handy, since it allows multiplications
where the results are in [0 : 2K ] without performing a modular reduction. This lowers the FFT
length and thus the execution time by a factor of two. We will now see how to use convolutions
to accomplish this.

If a(x) =
∑n−1
i=0 aix

i and b(x) =
∑n−1
j=0 bjx

j are two polynomials with coefficients ai, bj ∈ R,
then the coefficients of their product c(x) := a(x)b(x) =

∑2n−1
k=0 ckx

k are given by the (acyclic)
convolution formula

ck =
∑
i+j=k

aibj . (2.20)

Figure 8 shows the product of two polynomials a and b both with degree three. The lines
from top-left to bottom-right are convolutions with the dots being products of the individual
coefficients. For each convolution the sum of the indices of the coefficient products is constant.
As Gilbert Strang put it: “You smell a convolution when [the indices] add to [k]” [Str01].

In the process of the FFT as laid out in Section 2.7, two input polynomials are evaluated at
ωi, i ∈ [0 : n− 1], where ω is a primitive n-th root of unity. Afterwards, the sample values are
multiplied pointwise and transformed backwards to get the product polynomial.
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Figure 8: Convolution of two polynomials

Define the mapping

φ : R[x]→ Rn,

a(x) 7→
(
a(ω0, . . . , a(ωn−1)

)
.

The kernel of φ is the ideal generated by
∏n−1
i=0 (x − ωi). Since ωn = 1, surely (ωi)n = 1 holds

as well, for i ∈ [0 : n− 1]. So the polynomial xn − 1 yields zero for each x = ωi, hence it has n
distinct roots and the n linear factors x−ωi. From that we conclude that

∏n−1
i=0 (x−ωi) = xn−1

and hence that the kernel of φ is the ideal generated by xn − 1.

This means that polynomial multiplication that uses the mapping φ always gives results modulo
xn − 1. This is called the cyclic convolution of two polynomials. Given the aforementioned
polynomials a(x) and b(x) it produces the product polynomial c(x) with coefficients

ck =
∑
i+j≡k
(mod n)

aibj . (2.21)

Figure 9 shows the cyclic convolution of two polynomials of degree three. Here, the upper half
of coefficients “wraps around” and is added to the lower half. This is why it is sometimes called
a wrapped convolution.

We now know that a cyclic convolution gives us results modulo xn − 1. Can we get results
modulo xn + 1? Schönhage shows us we can.

Since i, j, k < n we can write (2.21) as

ck =
∑
i+j=k

aibj +
∑

i+j=n+k
aibj . (2.22)

The second sum contains the higher half product coefficients that wrap around and are added
to the lower half coefficients, since xn ≡ 1. But if we want results modulo xn + 1, it holds that
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Figure 9: Cyclic convolution of two polynomials

xn ≡ −1, hence what we are looking for is a way to compute

ck =
∑
i+j=k

aibj −
∑

i+j=n+k
aibj . (2.23)

Schönhage’s idea is to weight each of the coefficients ai and bj prior to the cyclic convolution
in such a way that for i + j = n + k and k < n it holds that θnaibj = −aibj , for some θ ∈ R
that we will specify immediately. This puts the desired minus sign in front of the second term
in (2.23).

Choose the weight θ as follows: let θ be a primitive n-th root of −1, that is, θn = −1 and hence
θ2 = ω. To compute (2.23), we use (2.21), but weight the inputs like

ãi := θiai and b̃j := θjbj (2.24)

and apply the proper “counterweight” θ−k to the whole sum, so we get

ck = θ−k
∑
i+j≡k
(mod n)

ãib̃j (2.25)

= θ−k
(∑
i+j=k

ãib̃j +
∑

i+j=n+k
ãib̃j

)
= θ−k

∑
i+j=k

θiaiθ
jbj + θ−k

∑
i+j=n+k

θiaiθ
jbj

= θ−k
∑
i+j=k

θkaibj + θ−k
∑

i+j=n+k
θn+kaibj

=
∑
i+j=k

aibj + θn
∑

i+j=n+k
aibj

=
∑
i+j=k

aibj −
∑

i+j=n+k
aibj .
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Figure 10: Negacyclic convolution of two polynomials

This is called a negacyclic or negative wrapped convolution. Figure 10 shows a diagram of it.
Please note that θ is in Z/(2K + 1)Z as well a power of 2, so weighting can be done by a cyclic
shift.

According to (2.23), the ck can become negative. Yet, we are looking for nonnegative c′k ≡ ck
(mod 2K + 1) with c′k ∈ [0 : 2K ]. If ck < 0, we can find c′k := ck + 2K + 1.

2.9.3 The Procedure

We are now all set to describe the whole procedure: given nonnegative integers a and b find
their product c := ab modulo 2N + 1.

Since the product is computed modulo 2N +1, we must choose N big enough for the full product
c. If we choose N ≥ dlog ae+ dlog be this is surely the case.

Denote R the ring Z/(2K + 1)Z, for some K = r2m. Let n := 2m be the FFT length and
let s := dN/ne be the bit length of input coefficients cut from a and b. Then our choice of
parameters has to meet the following constraints:

• R must contain a primitive n-th root of unity ω that is an even power of 2. (22x)n ≡ 1 ≡
22K leads to the sufficient condition

n | K. (2.26)

• Rmust be big enough to hold the convolution sums. Because of (2.23), the ck ∈ [−n22s+1 :
n22s−1], so the total range has size 2n22s−1. Hence select K so that 2K+1 > 2n22s−1 =
2m+2s+1 − 1. It is sufficient to select

K ≥ m+ 2s+ 1. (2.27)

• For increased speed, we might want to choose a larger K that contains a higher power
of 2. We will perform benchmarking later to find out if it pays off.
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These constraints lead to values for the FFT length n := 2m, the number of input bits per
coefficient s := dN/ne, and K = r2m ≥ m + 2s + 1. This in turn forces a new, maybe slightly
higher value for N := s2m, and determines ω := 22r and θ := 2r. Given those parameters, we
can proceed like we did with QMUL in Section 2.8, but with some alterations:

1. Split both input numbers a and b into n coefficients of s bits each. Use at least K+ 1 bits
to store them, to allow encoding of the value 2K .

2. Weight both coefficient vectors according to (2.24) with powers of θ by performing cyclic
shifts on them.

3. Shuffle the coefficients ai and bj .

4. Evaluate ai and bj . Multiplications by powers of ω are cyclic shifts.

5. Do n pointwise multiplications ck := akbk in Z/(2K + 1)Z. If SMUL is used recursively,
provide K as parameter. Otherwise, use some other multiplication function like T3MUL
and reduce modulo 2K + 1 afterwards.

6. Shuffle the product coefficients ck.

7. Evaluate the product coefficients ck.

8. Apply the counterweights to the ck according to (2.25). Since θ2n ≡ 1 it follows that
θ−k ≡ θ2n−k.

9. Normalize the ck with 1/n ≡ 2−m (again a cyclic shift).

10. Add up the ck and propagate the carries. Make sure to properly handle negative coeffi-
cients.

11. Do a reduction modulo 2N + 1.

If SMUL is used recursively, its input parameter N cannot be chosen freely. The calling SMUL
provides its parameter K as the input parameter N of the called SMUL.

I implemented some optimizations to the procedure outlined above to save execution time:

• Steps 1, 2 and 3 can be combined. Furthermore, since some high part of a and b is virtually
zero-padded, initialization of that part can be done quickly.

• Steps 8 and 9 can be combined.

• On the outermost SMUL, where N can be chosen, we don’t need to do a negacyclic trans-
form. This lets us skip the weighting of ai, bj and ck in Steps 2 and 8. We don’t check
for negative coefficients in Step 10 and don’t need the reduction in Step 11. Furthermore,
we don’t need θ =

√
ω and thus can extend the FFT length by another factor of 2. The

sufficient condition for selecting K relaxes to n | 2K.

• The cyclic shifts often shift by multiples of the word size w, where a word-sized copy is
faster than access to individual bits.
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2.9.4 Run-time Analysis

Let us analyze the cost of SMUL to compute a product modulo 2N + 1 and call this cost T (N).

According to (2.26), it is clear that K ≥ 2m, but we will show the time bound for the condition

K = 2m. (2.28)

This means that we might have to choose a K that is larger than required by (2.26) and (2.27),
but our choice only increases K by at most a factor of 2.

Furthermore, according to (2.27), K ≥ m + 2s + 1, where s = dN/2me. Surely we will find a
suitable K = 2m ≤ 2(m+ 2s+ 1). So for sufficiently large values of N

m+ 2N/2m + 1 ≤ K ≤ 2m+ 4N/2m + 2
2N/K ≤ K ≤ 5N/K

2N ≤ K2 ≤ 5N. (2.29)
√

2N ≤ K ≤
√

5N. (2.30)

Steps 1, 3, 6 and 10 have obviously cost O(2mK). The same applies to Steps 2, 8 and 9, since
the cost of cyclic shifts modulo 2K + 1 is O(K) as well. By the same argument Step 11 has cost
O(N).

According to (2.4), the FFT evaluation costs O(n logn), with n = 2m, but we have to take into
account that in contrast to (2.4), multiplications by roots of unity don’t cost O(1) here, but
O(K), so the cost of evaluation in Steps 4 and 7 is O(m2m)O(K). That leaves Step 5, where
we have 2m multiplications modulo 2K + 1, so the cost of that is 2mT (K).

If we add everything up, we get for the total cost

T (N) = O(2mK) +O(N) +O(m2m)O(K) + 2mT (K).

Using (2.28) and (2.29) we get

T (N) = O(N) +O(mN) +KT (K)
= O(mN) +KT (K).

By (2.30) we know that 2m = K ≤
√

5N , hence m ≤ 1
2 log (5N). Ergo

T (N) = O(N logN) +O(
√
N)T (

√
5N).

Unrolling the recursion once leads to

T (N) = O(N logN) +O(
√
N)
(
O(
√

5N log
√

5N) +O( 4√5N)T ( 4√53N)
)

= O(N logN) +O(
√
N)
(
O(
√
N logN) +O( 4√

N)T ( 4√53N)
)

= O(N logN) +O(N logN) +O( 4√
N3)T ( 4√53N)︸ ︷︷ ︸

=:∆

.
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After log logN steps the remaining summand ∆ ≤ O(N):

T (N) = O(N logN) +O(N logN) + . . .︸ ︷︷ ︸
log logN times

+O(N)

= O(N logN) +O(N logN) log logN +O(N)
= O(N · logN · log logN). (2.31)

To see why it takes log logN steps, observe that the order of the root doubles with each recursion
step. Hence, after log logN steps the order has reached 2log logN = logN =: λ. So the remaining
summand ∆ ≤ O( λ

√
Nλ−1)T ( λ

√
5λ−1N) ≤ O(N)T (5 λ

√
N). Lastly, λ

√
N = N1/ logN = 2 and

hence ∆ ≤ O(N)T (10) ≤ O(N).

Until the discovery of Fürer’s algorithm [Fü07] in 2007 this was the lowest known time bound
for a multiplication algorithm.

Now let us look at memory requirements. Memory needed for all 2m coefficients of one input
number is 2mK bits. According to (2.27) with s = dN/2me it holds that K ≥ m+2dN/2me+1.
Hence memory requirements in bits for one polynomial are

2mK ≥ 2m · (m+ 2dN/2me+ 1)
≥ 2m · (m+ 2N/2m + 1)
≥ 2m · 2N/2m

≥ 2N.

Temporary memory is required for both input polynomials, but for the resulting polynomial
storage of one of the input polynomials can be reused. SMUL needs some memory for the
multiplication of sample points, but this is only of the size of one coefficient, that is, K bits
and doesn’t change the order of the approximation. Hence, if N denotes the bit length of the
product and MSMUL(N) denotes total memory required by SMUL, it holds that

MSMUL(N) ≈ 4N bits. (2.32)

Figure 20 shows measured memory requirements, but note that in that table N refers to the
bit length of one input, where in this section N denotes the bit length of the product.

2.9.5 Benchmarking

Apart from optimizing the implementation on higher (see page 28) and lower levels (like assembly
language subroutines) benchmarking shows that we can save quite some execution time by
finding the fastest FFT length n from all possible values.

For this, we measure execution cycles for multiplications with different possible FFT lengths.
In principle, larger FFT lengths lead to faster multiplications, but the largest possible FFT
length is usually not the fastest. Larger FFT lengths lead to smaller coefficient sizes, but
more operations on the coefficients. On the other hand, the value of the primitive n-th root
ω might allow byte- or even word aligned (or even better SSE-word aligned) shifts, which can
be implemented faster than general bit-shifts. The smaller the FFT length, the better the
alignment for the cyclic shifts.
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Figure 11: SMUL FFT length vs. input length

Maybe even more importantly, certain values of K that contain high powers of 2 allow for larger
FFT lengths in the recursively called SMUL. So sometimes larger K work much faster, even if
the FFT length stays unchanged.

As a result, the fastest FFT length switches several times until it settles for a higher value.
Figure 11 gives an impression of this. The

√
N graph is printed for orientation, since 2m ≥√

2N/r.

The graph of execution cycles vs. input lengths is shown in Figure 12. We can see that it is well
below the QMUL graph, but intersects with the T3MUL graph at about 2500 words, that is, about
47 500 decimal digits. Furthermore, we observe a certain “bumpiness” of the graph, which is
a result of the changing FFT lengths and ring sizes. Yet, it is much smoother than the QMUL
graph.

Lastly, we try to model the run-time according to its theoretical value (2.31) for large values of
N . If we write the run-time with an explicit constant, then

Tσ(N) ≤ σ ·N · logN · log logN. (2.33)

Dividing measured execution cycles by N · logN · log logN to calculate σ leads to the graph
depicted in Figure 13. Please note that here N is the length of the product in bits. Interestingly,
this graph seems to have two plateau-like sections.

The first plateau ranges roughly from 12 800 to 8 000 000 input bits and the second plateau
starts at about 32 000 000 input bits. Since SMUL requires about 4N bits of temporary memory,
the above numbers indicate a plateau from 12 KB to 8 MB and another starting from 32 MB
temporary memory. This corresponds quite nicely with the cache sizes of the test machine (see
Appendix A). Such an influence on the run-time constant σ is no longer visible only after the
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required temporary memory is some orders of magnitude larger than the cache size. In our case
that would be starting from about 32 MB temporary memory.

Since after level 3 there are no other caching mechanisms, we can average σ for input sizes
above 32 Mbits (since a word is 64 bits, this equals 512 Kwords) and that leads to an average
σ ≈ 0.3159.
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2.9.6 Outlook

There are some possible improvements which might lower execution time that I have so far not
implemented or tested. Namely, this is:

• I benchmark different FFT lengths n to find the fastest one, but I could benchmark
different ring sizes K as well. It is sometimes profitable to use larger values for K, if K
contains higher powers of 2.

• Schönhage’s
√

2 knack†[SGV94, p. 36, exercise 18]. We can increase the transform length
by a factor of 2 by noticing that ξ = 23K/4− 2K/4 is a primitive 4K-th root of unity, since
ξ2 ≡ 2 (mod 2K +1) and 22K ≡ 1 (mod 2K +1). In [GKZ07], the authors mention a 10 %
speed increase. That paper also contains some other promising fields of optimization.

• The current implementation cuts input numbers into coefficients only at word boundaries.
Maybe cutting them at bit boundaries might lower K slightly for some input lengths.

• The procedure outlined in [CP05, pp. 502–503] saves one bit inK by selecting K ≥ m+ 2s
and then uses a sharper bound for the ck than I did by noticing that each ck can only
have k + 1 positively added summands, see Figure 10.

†[GKZ07] call it
√

2 trick, but Schönhage interjects that “trick” sounds too much like a swindle, so I call it a
knack instead.



Chapter 3

The DKSS Algorithm

This chapter describes DKSS multiplication, especially how it employs the fast Fourier trans-
form, and analyzes its execution time theoretically. Finally, differences between my implemen-
tation and the DKSS paper are described.

3.1 Overview

Schönhage and Strassen’s algorithm for fast multiplication of large numbers (implemented as
SMUL, see Section 2.9) uses the ring R = Z/(2K + 1)Z and exploits the fact that 2 is a primitive
2K-th root of unity in R. This permits the crucial speed-up in the fast Fourier transform:
multiplications by powers of the root of unity can be realized as cyclic shifts and are thus
considerably cheaper. An N -bit number is broken down into numbers that are O(

√
N) bits long

and when sample values are multiplied, the same algorithm is used recursively.

The DKSS algorithm (its implementation is called DKSS_MUL here) keeps this structure, but
extends it further. Where SMUL used the ring Z/(2K + 1)Z with 2 as root of unity, DKSS
multiplication uses the polynomial quotient ring R := P[α]/(αm + 1). Since αm ≡ −1, α is a
primitive 2m-th root of unity and again multiplications by powers of the root of unity can be
done as cyclic shifts. Underlying R is the ring P := Z/pzZ, where p is a prime number and z is
a constant. This “double structure” can be exploited in the FFT and allows to break down an
N -bit input number into numbers of O(log2N) bits.

In their paper [DKSS13], De, Kurur, Saha and Saptharishi describe the algorithm without any
assumption about the underlying hardware. Since we are interested in an actual implementation,
we can allow ourselves some simplifications, namely the precomputation of the prime p, and as
a consequence drop their concept of k-variate polynomials by setting k = 1. Section 3.4 explains
the differences between my implementation and the original paper in more detail.

3.2 Formal Description

We want to multiply two nonnegative integers a, b < 2N , N ∈ N to obtain their product
c := ab < 22N . As usual, we convert the numbers into polynomials over a ring (denoted R),
use the fast Fourier transform to transform their coefficients, then multiply the sample values

34
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and transform backwards to gain the product polynomial. From there, we can easily recover
the resulting integer product.

Denote R := P[α]/(αm + 1). As usual, we identify R with the set of all polynomials in P[α]
which are of degree less than m and where polynomial multiplication is done modulo (αm + 1).
Polynomial coefficients are in P and are called inner coefficients. Furthermore, define P :=
Z/pzZ, where p is a prime number and z is a constant chosen independently of the input. We
will see how to choose p shortly.

Input numbers a and b are encoded as polynomials a(x) and b(x) ∈ R[x] with degree-bound M .
That is, a(x) and b(x) are polynomials over R whose coefficients are themselves polynomials
over P. Call the coefficients of a(x) and b(x) outer coefficients.

This outline shows how to multiply a and b. The following Sections 3.2.1 – 3.2.8 contain the
details.

1. Choose integers m ≥ 2 and M ≥ m as powers of 2, such that m ≈ logN and M ≈
N/ log2N . We will later perform FFTs with length 2M , while m is the degree-bound of
elements of R. For simplicity of notation, define µ := 2M/2m.

2. Let u := d2N/Mme denote the number of input bits per inner coefficient. Find a prime p
with 2M | p− 1 and pz ≥Mm22u. The prime power pz is the modulus of the elements of
P.

3. From parametersM , m and p compute a principal (see Section 3.2.2 for definition) 2M -th
root of unity† ρ ∈ R with the additional property that ρ2M/2m = α. This property plays
an important part in Step 5.

4. Encode a and b as polynomials a(x), b(x) ∈ R[x] with degree-bound M . To accomplish
that, break them into M blocks with um/2 bits in each block. Each such block describes
an outer coefficient. Furthermore, split those blocks into m/2 blocks of u bits each, where
each block forms an inner coefficient in the lower-degree half of a polynomial. Set the
upper m/2 inner coefficients to zero. Finally, set the upper M outer coefficients to zero
to stretch a(x) and b(x) to degree-bound 2M .

5. Use root ρ to perform a length-2M fast Fourier transform of a(x) and b(x) to gain âi :=
a(ρi) ∈ R, likewise b̂i. Use the special structure of R to speed up the FFT.

6. Multiply components ĉi := âib̂i. Note that âi, b̂i ∈ R are themselves polynomials. Their
multiplication is reduced to integer multiplication and the DKSS algorithm is used recur-
sively.

7. Perform a backwards transform of length 2M to gain the product polynomial c(x) :=
a(x)b(x).

8. Evaluate the inner polynomials of the product polynomial c(x) at α = 2u and the outer
polynomials at x = 2um/2 to recover the integer result c = ab.

3.2.1 Choosing M and m

Choose m ≥ 2 and M ≥ m as powers of 2, such that m ≈ logN and M ≈ N/ log2N . For the
run-time analysis, the bounds M = O(N/ log2N) and m = O(logN) are more convenient.

†We simply write ρ instead of ρ(α), keeping in mind that ρ itself is a polynomial in α.
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3.2.2 Finding the Prime p

We use the following definition that captures the requirements for the existence of the inverse
FFT transform (cf. Sections 2.7 and 2.9.1):

Definition. Let R be a commutative ring with unity. A primitive n-th root of unity ζ ∈ R
is called principal if and only if

∑n−1
i=0 (ζj)i = 0, for j ∈ [1 : n − 1], and n is coprime to the

characteristic of R.

Since numbers are encoded as polynomials with degree-bound M (Step 4) and then multiplied,
the result has a degree-bound of 2M , so we need a principal 2M -th root of unity for the FFTs.
If p := h · 2M + 1 is prime for some h ∈ N (primes of this form are called Proth primes), we can
compute a principal 2M -th root of unity ω in Z/pzZ. Section 3.2.3 shows how it is done.

Why is pz ≥ Mm22u required? Since both a(x) and b(x) have degree-bound M , each outer
coefficient of their product c(x) is the sum of up to M outer coefficient products. Each of
these products is the sum of up to m/2 inner coefficient products, with each factor < 2u by
construction. So the inner coefficients can take values as high as 1

2Mm(2u − 1)2. If we choose
pz ≥Mm22u, we are on the safe side.

But does a prime of the form p = h · 2M + 1 exist for all M? We can answer that in the
affirmative with the help of the following

Theorem (Linnik [Lin44a], [Lin44b]). For any pair of coprime positive integers d and n, the
least prime p with p ≡ d (mod n) is less than `nL, where ` and L are positive constants.†

We want to show the existence of a prime p with p ≡ 1 (mod 2M), but also require pz ≥Mm22u.
Since Linnik’s Theorem makes only a statement about the first prime, we must check that
this prime to a constant power matches the requirement. An easy calculation shows that
(2M + 1)6 ≥Mm22u. As p is of the form p = h · 2M + 1, we see that for every h ∈ N and every
z ≥ 6 this means that pz ≥Mm22u. With the size condition resolved, we use Linnik’s theorem
to show that p < `(2M)L.

To get an estimate of p in terms of N , we recall that M = O(N/ log2N) and see that

p < `(2M)L = O
(( N

log2N

)L)
= O

( NL

log2LN

)
. (3.1)

In the implementation I tested candidate primes p for primality by using the Lucas-test [CP05,
sec. 4.1] that allows for fast deterministic primality testing if the full factorization of p − 1 is
known. p − 1 is a power of 2 times a small factor, because p = h · 2M + 1, so this test is well
suited here.

With that in mind, we can precompute values for p for all possible lengthsN , since our supported
hardware is 64-bit and hence N < 267 and (assuming M ≈ N/ log2N) M < 255.

3.2.3 Computing the Root of Unity ρ

In Step 2 we computed a prime p = h · 2M + 1, h ∈ N. Now we want to find a 2M -th root of
unity ω in Z/pzZ. A generator ζ of F∗p = {1, 2, . . . , p − 1} has order p − 1 = h · 2M . Hence ζ

†Over the years, progress has been made in determining the size of Linnik’s constant L. A recent work by
Xylouris [Xyl11] shows that L ≤ 5.
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is a primitive (p− 1)-th root of unity and ζh a primitive 2M -th root of unity in Z/pZ. In fact,
both ζ and ζh are even principal. The following theorem allows us to find roots in Z/psZ for
integer values s ≥ 2:

Theorem (Hensel Lifting [NZM91, sec. 2.6]). Let f ∈ Z[x] and let ζs ∈ Z be a solution to
f(x) ≡ 0 (mod ps), such that f ′(ζs) is a unit in Z/pZ. Then ζs+1 := ζs − f(ζs)/f ′(ζs) solves
f(x) ≡ 0 (mod ps+1) and furthermore ζs+1 ≡ ζs (mod ps).

Finding a primitive (p − 1)-th root of unity in Z/pzZ means solving f(x) = xp−1 − 1. We
can use Hensel lifting, because f ′(ζs) = (p − 1)ζp−2

s is a unit in Z/pZ, since p − 1 6= 0 and
ζp−2
s ≡ ζp−2 6≡ 0 (mod p). If we start with x = ζ as solution to f(x) ≡ 0 (mod p), then repeated
lifting yields a (p− 1)-th root of unity ζz in Z/pzZ. Hence ω := ζhz is a 2M -th root of unity in
Z/pzZ. To see that ω is also primitive, let j ∈ [1 : 2M − 1]. Then ωj = ζhjz ≡ ζhj 6≡ 1 (mod p),
as ζ is a primitive (p− 1)-th root of unity in Z/pZ.

To prove that ω is even principal note that the characteristic of R is pz, so ω has to be coprime
to pz, that is, coprime to p. But ω = ζhz ≡ ζh 6≡ 0 (mod p), so ω is not a multiple of p. Hence
ω and pz are coprime. Furthermore, it holds for j ∈ [1 : 2M − 1] that

2M−1∑
i=0

(ωj)i = 1− ωj2M

1− ωj = 1− (ω2M )j

1− ωj ≡ 0 (mod pz),

because ω is a primitive 2M -th root of unity in Z/pzZ.

We are looking for a principal 2M -th root of unity ρ ∈ R with the additional property ρ2M/2m =
α. Since R = P[α]/(αm + 1), α is a principal 2m-th root of unity. Denote γ := ω2M/2m,
a principal 2m-th root of unity in P. Observe that γi is a root of αm + 1 = 0, for an odd
i ∈ [1 : 2m − 1], since (γi)m = (γm)i = (−1)i = −1. Because the γi are pairwise different it
follows that

2m−1∏
i=1
i odd

(α− γi) = αm + 1.

Theorem (Chinese Remainder Theorem [Fis11, sec. 2.11]). If R is a commutative ring with
unity and I1, . . . , Ik are ideals of R, which are pairwise coprime (that is, Ii + Ij = R, for
i 6= j), then the mapping

φ : R→ R/I1 × . . .×R/Ik,
x 7→ (x+ I1, . . . , x+ Ik)

is surjective and kerφ = I1 · . . . · Ik. Especially, φ(x) = φ(x′)⇔ x− x′ ∈ I1 · . . . · Ik and

R/(I1 · . . . · Ik) ∼= R/I1 × . . .×R/Ik.

If the ideals Ii are generated by (α − γi), they are pairwise coprime, since γi − γj is a unit in
R, for i 6= j, see (3.3) below. So α ∈ P[α]/(αm + 1) is isomorphic to the k-tuple of remainders
(γ, γ3, . . . , γ2m−1) ∈

∏
i(P[α]/Ii). We are looking for a ρ satisfying ρ2M/2m = α, but we already

know that ω2M/2m = γ, hence (ω, ω3, . . . , ω2m−1) is the tuple of remainders isomorphic to ρ. To
regain ρ ∈ P[α]/(αm + 1) we use the next

Theorem (Lagrange Interpolation). Let R be a commutative ring with unity. Given a set of
k data points {(x1, y1), . . . , (xk, yk)} with (xi, yi) ∈ R × R, where the xi are pairwise different
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and xi − xj is a unit for all i 6= j, there exists a polynomial L(x) of degree less than k passing
through all k points (xi, yi). This polynomial is given by

L(x) :=
k∑
i=1

yi`i(x), where `i(x) :=
k∏
j=1
j 6=i

x− xj
xi − xj

.

In our case we know that ρ(α) ∼= (ω, ω3, . . . , ω2m−1), so it follows that the set of data points is
{(γ, ω), (γ3, ω3), . . . , (γ2m−1, ω2m−1)} and hence

ρ(α) :=
2m−1∑
i=1
i odd

ωi`i(α), where `i(α) :=
2m−1∏
j=1
j 6=i
j odd

α− γj

γi − γj
. (3.2)

The inverses to γi−γj exist. To see why, observe that an element of Z/pzZ is a unit if and only
if it is not divisible by p. But

γi − γj = ζi(p−1)/2m
z − ζj(p−1)/2m

z

≡ ζi(p−1)/2m − ζj(p−1)/2m (mod p)
6≡ 0 (mod p),

(3.3)

because ζ is a primitive (p− 1)-th root of unity and i, j ∈ [1 : 2m− 1] and since i 6= j the two
exponents of ζ are different.

3.2.4 Distribution of Input Bits

We want to encode a nonnegative integer a < 2N as polynomial over R[x] with degree-bound
M . We already calculated u = d2N/Mme, the number of bits per inner coefficient. First, a is
split into M blocks of um/2 bits each, starting at the lowest bit position. Each of these blocks
encodes one outer coefficient. Since Mum/2 ≥ N , we might need to zero-pad a at the top.

Then, each of the M outer coefficient blocks is broken into m/2 blocks, each u bits wide. They
form the inner coefficients. Since the inner coefficients describe a polynomial with degree-bound
m, the upper half of the coefficients is set to zero.

Finally, set the upperM outer coefficients to zero to stretch a(x) to degree-bound 2M . Figure 14
depicts this process.

3.2.5 Performing the FFT

Section 2.6 described a radix-2 Cooley-Tukey FFT. The DKSS algorithm uses an FFT with a
higher radix, but still the same basic concept. A Cooley-Tukey FFT works for any length that
is a power of 2, here the length is 2M and it can be split as 2M = 2m · µ, with µ = 2M/2m.

The DKSS algorithms uses a radix-µ decimation in time Cooley-Tukey FFT (cf. [DV90, sec. 4.1]),
that is, it first does µ FFTs of length 2m, then multiplies the results by “twiddle factors” and
finally performs 2m FFTs of length µ. We can exploit the fact that the length-2m FFT uses
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M blocks

m
2 · u bits

M · m2 · u bits

m
2 blocks

m
2 · u bits

u bits

Figure 14: Encoding an input integer as a polynomial over R

α as root of unity, since multiplications with powers of α can be performed as cyclic shifts and
are thus cheap.

We now describe the process formally. By construction, a(x) ∈ R[x] is a polynomial with degree-
bound 2M and ρ ∈ R is a principal 2M -th root of unity. Bear in mind that ρ2M/2m = ρµ = α.
Since αm ≡ −1, α is a primitive 2m-th root of unity in R. We can compute the length-2M
DFT of a(x) with ρ as root of unity in three steps:

i. Perform inner DFTs.†

Figure 15 shows the input vector a, which contains the coefficients of the polynomial a(x).
The arrow indicates the ordering of the elements for the DFT.

a0 a1 . . . aµ−1 aµ aµ+1 . . . a(2m−1)µ−1 a(2m−1)µ a(2m−1)µ+1 . . . a2mµ−1

[ ]2M = 2m · µ elements

Figure 15: Input vector a

Rewrite the input vector a as 2m rows of µ columns and perform FFTs on the columns,
see Figure 16. The boxes hold the values of vectors called e`, while the arrows indicate
the ordering of their elements.

a0 a1 . . . aµ−1
aµ aµ+1 . . . a2µ−1

...
...

...
a(2m−1)µ a(2m−1)µ+1 . . . a2mµ−1





µ columns

2m rows

= e0 = e1 = eµ−1

Figure 16: Input vector a written as µ column vectors of 2m elements

†Please note that the inner and outer DFTs have no relation to the inner or outer coefficients.



40 Chapter 3. The DKSS Algorithm

We now define polynomials āv(x), which are residues of modular division. We will show
that they can be calculated by performing DFTs on the e`.
Let v ∈ [0 : 2m− 1] and define polynomials āv(x) ∈ R[x] with degree-bound µ as

āv(x) := a(x) mod (xµ − αv). (3.4)

Denote aj ∈ R the j-th coefficient of a(x), let ` ∈ [0 : µ− 1] and define e`(y) ∈ R[y] as

e`(y) :=
2m−1∑
j=0

ajµ+` · yj . (3.5)

That is, the j-th coefficient of e`(y) is the (jµ + `)-th coefficient of a(x), and e`(y) is a
polynomial over R with degree-bound 2m.
To calculate āv(x), write it out:

āv(x) = a(x) mod (xµ − αv)
= (a0 + a1x+ . . .+ aµ−1x

µ−1+
aµx

µ + aµ+1x
µ+1 + . . .+ a2µ−1x

2µ−1+
a2µx

2µ + a2µ+1x
2µ+1 + . . .+ a3µ−1x

3µ−1+
. . .+ a2M−1x

2M−1) mod (xµ − αv).

Since xµ ≡ αv (mod xµ − αv), replace xµ with αv and get

āv(x) = a0 + a1x+ . . .+ aµ−1x
µ−1+

aµα
v + aµ+1α

vx+ . . .+ a2µ−1α
vxµ−1+

a2µα
2v + a2µ+1α

2vx+ . . .+ a3µ−1α
2vxµ−1+

. . .+ a2M−1α
(2m−1)vxµ−1.

Denote āv,` the `-th coefficient of āv(x). Adding up coefficients of matching powers of x
yields

āv,` =
2m−1∑
j=0

ajµ+` · αjv.

Compare this to (3.5) to see that

āv,` = e`(αv).

So to find the `-th coefficient of each āv(x) we can perform a length-2m DFT of e`(y),
using α as root of unity. Call these the inner DFTs. If we let ` run through its µ possible
values, we get the coefficients of all āv(x). Figure 17 shows the result of the inner DFTs.
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ā0,0 ā0,1 . . . ā0,µ−1

ā1,0 ā1,1 . . . ā1,µ−1

...
...

...

ā2m−1,0 ā2m−1,1 . . . ā2m−1,µ−1





ā0 =
ā1 =

ā2m−1 =

Figure 17: Result of inner DFTs as 2m row vectors of µ elements

Multiplications by powers of α can be performed as cyclic shifts. Since αm ≡ −1, coeffi-
cients of powers ≥ m wrap around with changed sign. This works much in the same way
as the integer 2 in Schönhage and Strassen’s multiplication algorithm in Section 2.9.

ii. Perform bad multiplications.
What De, Kurur, Saha and Saptharishi call bad multiplications is known as multiplications
by twiddle factors in the Cooley-Tukey FFT.
Our goal is to compute the DFT of a(x) with ρ as 2M -th root of unity, that is, to compute
a(ρi), for i ∈ [0 : 2M−1]. Express i as i = 2m·f+v with f ∈ [0 : µ−1] and v ∈ [0 : 2m−1].
Then

a(ρi) = a(ρ2m·f+v) = āv(ρ2m·f+v), (3.6)

because according to (3.4)

āv(ρ2m·f+v) = a(ρ2m·f+v) mod ((ρ2m·f+v)µ − αv︸ ︷︷ ︸
=:ξ

)

with ξ = (ρ2m·f+v)µ − αv

= (ρ2M︸︷︷︸
=1

)f · ( ρµ︸︷︷︸
=α

)v − αv

= αv − αv

= 0. †

We already computed the polynomials āv(x) in Step i above. In order to efficiently compute
āv(ρ2m·f+v), we define

ãv(x) := āv(x · ρv), (3.7)

so that if ãv(x) is evaluated at x = ρ2m·f we get ãv(ρ2m·f ) = āv(ρ2m·f+v).
Computing ãv(x) can be done by computing its coefficients ãv,` = āv,` · ρv`, with ` ∈ [0 :
µ−1]. Since coefficients are themselves polynomials, use Kronecker-Schönhage substitution
as described in Section 3.2.6 to efficiently multiply them.

iii. Perform outer DFTs.
Now all that is left is to evaluate the ãv(x), v ∈ [0 : 2m−1], at x = ρ2m·f , for f ∈ [0 : µ−1].
In Step ii we arranged ãv(x) in such a way that this evaluation is nothing but a length-µ
DFT of ãv(x) with ρ2m as root of unity. Call these the outer DFTs. They are depicted in
Figure 18.

†Since a = b (mod c) means a− b = kc, for some k ∈ Z, a = b (mod 0) means equality.
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ã0,0 ã0,1 . . . ã0,µ−1

ã1,0 ã1,1 . . . ã1,µ−1

...
...

...

ã2m−1,0 ã2m−1,1 . . . ã2m−1,µ−1





ã0 =
ã1 =

ã2m−1 =

Figure 18: Outer DFTs on 2m row vectors of µ elements

If M ≥ m this is done by a recursive call to the FFT routine and according to (3.6) and
(3.7) computes ãv(ρ2m·f ) = āv(ρ2m·f+v) = a(ρ2m·f+v) = a(ρi).
If M < m, just computing an inner DFT with α2m/2M as (2m/2M)-th root of unity is
sufficient.

3.2.6 Componentwise Multiplication

Multiply coefficients ãi by b̃i to compute 2M product coefficients ĉi := âib̂i. Since coefficients
are from R and are thus themselves polynomials, we use Kronecker-Schönhage substitution (cf.
[Sch82, sec. 2], [BZ11, sec. 1.3 & 1.9]) to multiply them and reduce polynomial multiplication
to integer multiplication. Then we can use the DKSS algorithm recursively.

Definition (Kronecker-Schönhage substitution). Kronecker-Schönhage substitution reduces
polynomial multiplication to integer multiplication. Since R = P[α]/(αm+1) consists of polyno-
mials with degree-bound m, whose coefficients are in P = Z/pzZ, each coefficient can be stored
in d := dlog pze bits. Coefficients are to be multiplied, so 2d bits per coefficient product must be
allocated to prevent overflow. Furthermore, multiplication of two polynomials with degree-bound
m leads to m summands for the middle coefficients, thus another logm bits per coefficient are
required.

This substitution converts elements of R into integers that are m(2d + logm) bits long. Then
these integers are multiplied and from the result the product polynomial is recovered.

3.2.7 Backwards FFT

The backwards FFT works exactly like the forward FFT described in Step 5. We use in fact an
inverse FFT and reordering and scaling of the resulting coefficients is handled in the next step.

3.2.8 Carry Propagation

In Step 4, we encoded an input number a into the polynomial a(x) by putting um/2 bits into each
outer coefficient and from there distributing u bits into each of the m/2 lower inner coefficients.
When decoding the product polynomial c(x) into the number c, we must use the same weight
as for encoding, so we evaluate the inner coefficients at α = 2u and the outer coefficients at
x = 2um/2. Of course, on a binary computer this evaluation can be done by bit-shifting and
addition.

We must take the ordering of the resulting coefficients into account. In Section 2.7 we defined
a backwards transform to get results that are properly ordered. However, for simplicity of
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implementation, we use again a forward transform and access its resulting coefficients in different
order.

Furthermore, all result coefficients are scaled by a factor of 2M , so we have to divide them by
2M prior to addition.

3.3 Run-time Analysis

3.3.1 Analysis of each Step

Our goal is to find an upper bound to the bit complexity T (N) needed to multiply two non-
negative N -bit integers using the implementation of DKSS multiplication to get their 2N -bit
product. We estimate the run-time of each step individually.

1. Choosing M and m does only depend on the length of the input and can be done in
constant time.

2. Computing u takes constant time as does finding p, since we precomputed all values for p
for the supported hardware. Thus, this step has cost O(1) as well.

3. In this step we compute a 2M -th root of unity ρ ∈ R from a known generator ζ of F∗p. TP
denotes the time to multiply two arbitrary numbers in P. First, we use Hensel lifting to
calculate ζz in z − 1 lifting steps. In each step we have to calculate

ζs+1 := ζs − (ζp−1
s − 1) · ((p− 1)ζp−2

s )−1.

This can be done with 1 exponentiation, 3 multiplications, 4 subtractions and 1 modular
inverse.
To exponentiate, we use binary exponentiation [Knu97b, ch. 4.6.3], which requires O(log p)
multiplications in P, and to find the modular inverse we use the extended Euclidean
algorithm [Knu97b, ch. 4.5.2] with O(log pz) steps, where each step costs O(log pz). After
lifting, we calculate ω = ζhz , where h < p/2M .
Together, the cost Tω to calculate ω is

Tω = (z − 1)
(
O(log p)TP + 3TP + 4O(log pz) +O(log pz)O(log pz)

)
+

O(log p)TP
= O(log p · TP + log2 pz).

After that, we perform Lagrange interpolation: according to (3.2) it consists ofm additions
of polynomials in R, each of which is computed by m − 1 multiplications of degree-1
polynomials with polynomials in R plus m− 1 modular inverses in P.
Thus, the run-time for Lagrange interpolation is

TLagrange = m(mO(log pz) + (m− 1)(2mTP +O(log pz · log pz)))
= O(m2(log pz +mTP + log2 pz))
= O(m2(mTP + log2 pz)).
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Ordinary multiplication can multiply n-bit integers in run-time O(n2), hence TP can be
bounded by O(log2 pz). Using (3.1) we estimate pz = O(NLz/ log2Lz N) and recall that
m = O(logN). We get as total time to compute ρ:

Tρ = Tω + TLagrange

= O
(

log p · TP + log2 pz)
)

+O
(
m2(mTP + log2 pz)

)
= O

(
log p ·O(log2 pz) + log2 pz +m2(mO(log2 pz) + log2 pz)

)
= O

(
log p · log2 pz +m2(m log2 pz + log2 pz)

)
= O

(
(log p+m3) log2 pz

)
= O

(
(log(NL/ log2LN) + log3N) log2(NLz/ log2Lz N)

)
= O(log3N · log2N)
= O(log5N).

4. Encoding input numbers as polynomials can be done in time proportional to the length
of the numbers, that is, in time O(N).

5. As we will see, the FFT is one of the two most time-consuming steps; the other one being
the multiplication of sample values. Let us first evaluate the run-time of a length-2M
FFT over R, denoted by TD(2M). We analyze the run-time of each step of the FFT
individually. TR denotes the time needed to multiply two arbitrary elements of R and
will be specified later.

i. The first step performs µ = 2M/2m inner FFTs over R of length 2m. To calculate
one DFT we need to perform 2m log(2m) additions and m log(2m) multiplications
by powers of α, cf. (2.4). A single addition costs O(m log pz), since an element of
R is a polynomial over P = Z/pzZ with degree-bound m. Since multiplication by a
power of α can be done with a cyclic shift, its run-time is of the same order as that
of an addition. So the run-time to compute one inner DFT is

3m log(2m) ·O(m log pz) = O(m2 logm · log pz),

and the run-time to compute all 2M/2m inner DFTs in this step is

2M/2m ·O(m2 logm · log pz) = O(Mm logm · log pz).

ii. Here, we prepare the 2m polynomials āv(x) for the outer DFTs. For each v ∈ [0 :
2m − 1], the polynomial āv(x) has µ = 2M/2m coefficients, which makes a total of
2M multiplications in R by powers of ρ to compute all ãv(x). The same number
of multiplications is needed to compute the powers of ρ. So this step has a total
run-time of 4M · TR.

iii. This last step computes 2m outer DFTs. The FFT routine is invoked recursively to
do this. The total run-time for this step is the time for 2m DFTs of length 2M/2m
and hence

2m · TD(2M/2m).

The recursion stops when the FFT length is ≤ 2m, that is, after log2m(2M) levels.
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The total run-time TD(2M) of the FFT is the sum of the run-times of all three steps, that
is,

TD(2M) = O(Mm logm · log pz) + 4M · TR + 2m · TD(2M/2m)
= log2m(2M) ·

(
O(Mm logm · log pz) + 4M · TR

)
. (3.8)

6. Each of the 2M coefficient pairs âi, b̂i can be multiplied in time TR. Thus, the run-time
for this step is 2M · TR.

7. The backwards FFT has the same cost as the forward FFT, see (3.8).

8. Decoding the polynomials back into integers and performing carry propagation can be
done with 2Mm additions of length log pz, hence with cost

Tdecode = O(2Mm log pz)

= O
( N

log2N
logN · log NLz

log2Lz N

)
= O

( N

logN logNLz
)

= O(N).

3.3.2 Putting Everything Together

To conclude our evaluation of the run-time, we need to upper bound the value of TR, the time
needed to multiply two arbitrary elements of R. For that purpose, we use Kronecker-Schönhage
substitution as described in Section 3.2.6.

Theorem (Kronecker-Schönhage substitution). Multiplication in R can be reduced to integer
multiplication of length O(log2N) bits.

This substitution converts elements of R into integers of m(2d+ logm) bits, with d = dlog pze,
multiplies the integers and from the integer result recovers the product polynomial. To see how
large these integers get in terms of N , we use (3.1) and obtain

m(2d+ logm) = O(logN · (2dlog pze+ log logN))
= O(logN · (log pz + log logN))
= O(logN · (log(NLz/ log2Lz N) + log logN))
= O(logN · Lz logN)
= O(log2N). (3.9)

T (N) denotes the time to multiply two N -bit integers, so TR = T (O(log2N)).
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Adding up the run-time estimates of all steps we get the total run-time T (N) for DKSS multi-
plication:

T (N) = O(1) +O(1) +O(log5N) +O(N) + 2TD(2M) + 2MTR + TD(2M) +O(N)
= 3TD(2M) + 2MTR +O(N)
= 3

(
log2m(2M)(O(Mm logm · log pz) + 4MTR)

)
+ 2MTR +O(N)

= O
(

log2m(2M)(Mm logm · log pz +MTR) +MTR +N
)

= O
(
M log2m(2M)(m logm · log pz + T (O(log2N))) +MT (O(log2N)) +N

)
.

In terms of N that is

T (N) = O
( N

log2N

log(2N/ log2N)
log(2 logN)

(
logN · log logN · log

( NLz

log2Lz N

)
+

T (O(log2N))
)

+ N

log2N
T (O(log2N)) +N

)
= O

( N

log2N

logN
log logN

(
logN · log logN · logN + T (O(log2N))

)
+

N

log2N
T (O(log2N)) +N

)
= O

(
N logN + N

logN · log logN T (O(log2N)) + N

log2N
T (O(log2N)) +N

)
= O

(
N logN + N

logN · log logN · T (O(log2N))
)
. (3.10)

3.3.3 Resolving the Recursion

To solve the recursion, we will need the following estimation. Observe that for any real x ≥ 4
it holds that

log(λ log2 x)
log log x = log(λ(log x)2)

log log x = log λ+ 2 log log x
log log x ≤ log λ+ 2. (3.11)

The following notation is introduced to abbreviate the upcoming nested logarithms: define
f0(N) := N and fi(N) := λ log2 fi−1(N), for i ∈ N and some λ. Furthermore, let τ ≥ 4 be
the smallest length where the algorithm is used, otherwise a simpler algorithm is used. Now we
express the run-time from (3.10) with explicit constants, assuming that λ log2N = f1(N) ≥ τ
and unroll the recursion once:

T (N) ≤ µ
(
N logN + N

logN · log logN T (λ log2N)
)

= µN logN
(
1 + T (λ log2N)

log2N · log logN

)
≤ µN logN

(
1 + µ(λ log2N) log(λ log2N)

log2N · log logN
(1 + T (λ log2(λ log2N))

log2(λ log2N) · log log(λ log2N)
)
)

= µN logN
(
1 + µλ log(λ log2N)

log logN (1 + T (λ log2 f1(N))
log2 f1(N) · log log f1(N)

)
)
.
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Using (3.11) leads to

T (N) ≤ µN logN
(
1 + µλ(log λ+ 2)︸ ︷︷ ︸

=:η

(1 + T (λ log2 f1(N))
log2 f1(N) · log log f1(N)

)
)

= µN logN
(
1 + η + η · T (λ log2 f1(N))

log2 f1(N) · log log f1(N)

)
.

Assuming λ log2 f1(N) = f2(N) ≥ τ we unroll once more and get

T (N) ≤ µN logN
(
1 + η +

η · µλ log2 f1(N) · log(λ log2 f1(N))
log2 f1(N) · log log f1(N)

(1 + T (λ log2 f2(N))
log2 f2(N) · log log f2(N)

)
)
.

Again canceling out and using (3.11) gives

T (N) ≤ µN logN
(
1 + η + η µλ(log λ+ 2)︸ ︷︷ ︸

=η

(1 + T (λ log2 f2(N))
log2 f2(N) log log f2(N)

)
)

= µN logN
(
1 + η + η2 + η2 · T (λ log2 f2(N))

log2 f2(N) log log f2(N)

)
= µN logN

( 2∑
i=0

ηi + η2 · T (λ log2 f2(N))
log2 f2(N) log log f2(N)

)
.

Obviously, after unrolling j ∈ N0 levels of recursion and assuming fj(N) ≥ τ we get

T (N) ≤ µN logN
( j∑
i=0

ηi + ηj · T (λ log2 fj(N))
log2 fj(N) log log fj(N)

)
. (3.12)

The remaining question is now: how many levels of recursion are there for a given N? To find
out, we look for a lower bound for N after j levels of recursion.

Equation (3.12) applies if fj(N) ≥ τ . If j ≥ 1 we can reduce fj(N) once and get

fj(N) ≥ τ
λ log2 fj−1(N) ≥ τ

log2 fj−1(N) ≥ τ/λ

log fj−1(N) ≥
√
τ/λ

fj−1(N) ≥ 2
√
τ/λ. (3.13)

A second reduction works quite like the first, assuming j ≥ 2:

λ log2 fj−2(N) ≥ 2
√
τ/λ

log fj−2(N) ≥
√

2
√
τ/λ/λ

fj−2(N) ≥ 2
√

2
√
τ/λ/λ

.
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Transforming the exponent we get√
2
√
τ/λ/λ =

√
(2
√

1/λ)
√
τ/λ =

√
(2
√

1/λ)
√
τ/
√
λ = (2

√
1/λ)

1
2︸ ︷︷ ︸

=:β

·
√
τ/
√
λ = β

√
τ/
√
λ.

Now use that and reduce again, assuming j ≥ 3:

fj−2(N) ≥ 2β
√
τ/
√
λ

λ log2 fj−3(N) ≥ 2β
√
τ/
√
λ

fj−3(N) ≥ 2
√

2β
√
τ /
√
λ/λ

.

Transforming the exponent again gives√
2β
√
τ/
√
λ/λ =

√
(2
√

1/λ)β
√
τ /λ =

√
(2
√

1/λ)β
√
τ /
√
λ = (2

√
1/λ)

1
2︸ ︷︷ ︸

=β

·β
√
τ
/
√
λ = ββ

√
τ
/
√
λ,

which yields

fj−3(N) ≥ 2ββ
√
τ
/
√
λ. (3.14)

So we see that with each unroll step of fj(N) we get another exponentiation by β in the
exponent.

Definition (Iterated Exponentials). Let a, x ∈ R, n ∈ N0 and denote expa(x) = ax, then

expna(x) :=
{
x if n = 0
expa(expn−1

a (x)) if n > 0

is called iterated exponentials or power tower. For example, exp3
a(x) = aa

ax . This notation is
inspired by Euler’s exp(x) function and functional iteration in [CLRS09, p. 58].

With the help of iterated exponentials we can write (3.14) as

fj−3(N) ≥ 2exp2
β(
√
τ)/
√
λ,

and if we reduce fj(N) fully we get

N = f0(N) ≥ 2expj−1
β

(
√
τ)/
√
λ. (3.15)

We are close to the goal, which we can attain with help of the following

Definition (Iterated Logarithm [CLRS09, p. 58]). Let a, x ∈ R>0, then the iterated logarithm
is defined as

log∗a(x) :=
{

0 if x ≤ 1
log∗a(loga x) + 1 if x > 1

(3.16)

and is the inverse of expna(1), that is, log∗a(expna(1)) = n. The iterated logarithm is the number
of loga-operations needed to bring its argument to a value ≤ 1. As usual, log∗ x := log∗2 x.
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Now we use the iterated logarithm on (3.15) and get

N ≥ 2expj−1
β

(
√
τ)/
√
λ

logN ≥ expj−1
β (
√
τ)/
√
λ

√
λ logN ≥ expj−1

β (
√
τ)

log∗β(
√
λ logN) ≥ j − 1 + log∗β

√
τ

log∗β(
√
λ logN) + 1− log∗β

√
τ ≥ j. (3.17)

We can replace log∗β x by O(log∗2 x). To see why, observe that if β could be expressed as some
power tower of 2, say, β = 222 , that is, log∗ β = 3, then a power tower of β is less than one of 2
with thrice the length, because ββ = (222)β < 22(2β) . Hence, log∗β x ≤ log∗ x · log∗ β = O(log∗ x),
since β is constant.

Since only N is a variable, this finally leads to the estimate

j ≤ log∗β(
√
λ logN) + 1− log∗β

√
τ

= O(log∗β(
√
λ logN))

= O(log∗β N)
= O(log∗N). (3.18)

Now, we can pick up (3.12) again. We assume η 6= 1, fj(N) ≥ τ , but fj+1(N) < τ and hence in
analogy to (3.13), fj(N) < 2

√
τ/λ. Then we get

T (N) ≤ µN logN
( j∑
i=0

ηi + ηj · T (λ log2 fj(N))
log2 fj(N) log log fj(N)

)
≤ µN logN

(ηj+1 − 1
η − 1 + ηj · T (fj+1(N))

log2 fj(N) log log fj(N)

)
.

Capturing the constants into Big-O’s yields

T (N) = µN logN(O(ηj+1) +O(ηj))
T (N) = O(N logN · ηj+1)

= N logN · ηO(log∗N).

Expressing η and the constant from O(. . .) as 2κ, for some constant κ, we write

T (N) = N logN · (2κ)O(log∗N)

= N · logN · 2O(log∗N). (3.19)

3.4 Differences to DKSS Paper

The intention of this thesis is to assess the speed of an implementation of DKSS multiplication
on a modern computer. Its architecture imposes certain limits on its software. For example,
the amount of memory that can be addressed is limited by the size of the processor’s index
registers. A more compelling limit is that the universe contains only a finite amount of matter
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and energy, as far as we know. A computer will need at least one electron per bit and thus,
even if we could harness all (dark) matter and energy for memory bits, any storable number
could surely not exceed 2300 bits in length.

Another limit creeps in with the speed of the machine: there is no practical use to provide a
solution that will run several thousand years or more to complete. An estimation of the run-time
to multiply numbers with 265 bits leads to a minimum of 7000 years on the test machine.

This led me to assume a maximum length of input numbers. Since the implementation runs
on a 64-bit CPU, the number’s length is de facto limited to 8 · 264/4 = 265 bits. And since the
length is limited, we can precompute some constants needed in the algorithm, namely the prime
p and a generator ζ of F∗p. I did this for values of p with 2 to 1704 bits in length.

De, Kurur, Saha and Saptharishi went to great lengths to show that suitable primes p can be
found at run-time and to make their construction work, they use pz as modulus, z > 1, as we
have seen in Sections 3.2.2 and 3.2.3.

Furthermore, they encode input numbers as k-variate polynomials, where the degree in each
variable is < 2M . That is, outer polynomials are in R[X1, . . . , Xk]. When it comes to the
FFT, they fix one variable, say Xk, and treat the outer polynomials as univariate polynomials
over S := R[X1, . . . , Xk−1]. Note that ρ is a principal 2M -th root of unity in S as well.
Then they perform FFT multiplication of a univariate polynomial over S. The componentwise
multiplication uses FFT multiplication recursively, because now two (k−1)-variate polynomials
have to be multiplied.

Since the only need for k-variate polynomials was to show that p can be found at run-time, I
was able to use k = 1 and use univariate polynomials in the implementation. Furthermore, it
was easy to precompute p to greater sizes, so there was no need for z > 1 and thus I dropped
Hensel lifting to find ζz as well.

I changed some variable names from [DKSS13] to avoid confusion with other variables of the
same name or to improve clarity. If the reader is familiar with the original paper, here is a small
overview of changed names:

Description DKSS paper This thesis
Exponent of prime p in modulus c z
Number of variables for outer polynomials k (dropped, k = 1)
Factor in progression for finding prime p i h
Residue polynomials in DFT aj āv
Index variable in DFT k f
Radix of FFT 2M/2m µ



Chapter 4

Implementation of DKSS
Multiplication

In this chapter my implementation of DKSS multiplication is presented. Parameter selection is
discussed and exemplary source code is shown, together with a description of tests performed
to assert the software’s correctness. Then, measured execution time, memory requirements and
source code size is examined. I discuss the results of profiling and lastly, extrapolate run-time
for increasing input lengths.

4.1 Parameter Selection

The description of parameter selection in Section 3.2 leaves some freedom on how exactly to
calculate M , m, u and p. Recall that we are performing FFTs of polynomials with degree-
bound 2M in R[x], where R = P[α]/(αm + 1) and P = Z/pzZ. We call coefficients in R[x]
outer coefficients and coefficients in P[α] inner coefficients. Both input numbers have N bits,
parameter u is the number of bits of the input number that go into each inner coefficient and z
is constant.

I aimed at a monotonically increasing graph of execution time, that is, growing input lengths
lead to growing execution times. Parameter selection that leads to a rough graph suggests that
better parameters could be selected.

This led me to choose the prime p first. Section 3.2.2 mentions lower bounds for pz. Recall that
M ≈ N/ log2N and m ≈ logN . I use

pz ≥ 1
2Mm22u ≈ 1

2N
5/ logN. (4.1)

Furthermore, I decided to round up the number of bits of p to the next multiple of the word
size. Since both allocated memory and cost of division (for modular reductions) depend on the
number of words, it seemed prudent to make the most out of it. Benchmarks show that this
was a good choice, see Figure 19 for a graph of timings.

DKSS multiplication uses P = Z/pzZ with z > 1 to lower run-time in the asymptotic case
by lowering the upper bound for finding the prime p. But that doesn’t apply here, since the
machine this implementation runs on enforces upper limits of the length of numbers. So despite

51
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the description of the process of Hensel lifting in Section 3.2.3, I did not implement it, because
precomputation of larger prime numbers was the easier choice (see Linnik’s Theorem on page 36).
Furthermore, the special build of Proth prime numbers could be exploited in the future to speed
up modular reductions.

Having chosen p, I then select the largest u that is able to hold the whole 2N bits of the result.
It follows from (4.1) that log(pz) ≥ log(Mm) + 2u − 1. Since log(pz) is chosen first, I try to
maximize u. The larger u is, the less coefficients are needed. After finding an u that fits, I try
to minimize the product Mm, because the smaller Mm is, the smaller the FFT length and the
memory requirements are.

Lastly, I set M and m and try to maintain the quotient M/m ≈ N/ log3N that follows from
the description in Section 3.2.1. On the other hand, factors can be moved around between M
and m, since in selection of u and p only the product Mm is needed. I did some short tests on
selecting M/m ≈ k ·N/ log3N for some k, but it seemed that k = 1 was overall a good choice.

4.2 A Look at the Code

If the parameters are given (namely M , m, u, pz and ρ), the main idea of DKSS multiplica-
tion lies in the structure of the ring R and the way the DFT is computed: inner DFTs, bad
multiplications and outer DFTs.

To give an impression of the implementation, following is the FFT main routine. Language
constructs (like templates and typedefs), debug code and assertions were stripped to improve
readability. As mentioned in Section 2.2, tape_alloc is a stack-like memory allocator. It takes
the number of words requested as argument.

void dkss_fft (
word* a, // input vector
unsigned M,
unsigned m,
unsigned oclen , // outer coeff length = m * iclen
unsigned iclen , // inner coeff length >= bit_length (p^z) / bits ( word )
word* pz , // modulus p^z
word* rho_pow , // powers [0 : m -1] of \ rho
unsigned base_pow ) // quotient of order of top level \ rho and now

{
if (M <= m) { // use inner DFT right away

tape_alloc tmp( oclen ); // allocate some memory from the " tape "
word* t = tmp.p; // length oclen
unsigned log_M = int_log2 (M);
fft_shuffle (a, log_M + 1, oclen ); // pre - shuffle the values
dkss_inner_fft_eval (a, M, m, oclen , iclen , pz , t);
return ;

}

unsigned mu = M / m; // \mu = 2M/2m
unsigned log2m = int_log2 (m) + 1;
tape_alloc tmp (2*M * oclen + 2*m * oclen + oclen );
word* abar = tmp.p; // length 2*M*oclen , \ bar {a}
word* el = abar + 2*M * oclen ; // length 2*m*oclen , e_\ ell
word* t = el + 2*m* oclen ; // length oclen , temp storage

// perform inner DFTs
// i guess it ’s better to copy elements instead of using pointers and work
// in -place , because this way cache thrashing can only occur once when
// copying and not on every access .
for ( unsigned l=0; l<mu; ++l) { // cycle through all values for l

// assemble e_l (y):
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// the j-th coeff of e_l(y) is the (j*mu+l)-th coeff of a(x)
// for the FFT evaluation , we assemble e_l (y) already in shuffled order
word* a_jxl = a + l* oclen ; // points to a_l
for ( unsigned j=0; j <2*m; ++j) {

word* el_j = el + bit_rev (j, log2m ) * oclen ;
copy(el_j , a_jxl , oclen );
a_jxl += mu * oclen ; // point to next a_{j*\ mu+l}

}

// perform inner DFT on e_l (y) with alpha as 2m-th root of unity
dkss_inner_fft_eval (el , m, m, oclen , iclen , pz , t);

// l-th coeffs of all a_v (x) is e_l ( alpha ^v), i.e. v-th coeff of DFT (e_l )
// this copies transformed elements back into place
word* el_v = el;
word* abar_vl = abar + l* oclen ;
for ( unsigned v=0; v <2*m; ++v) {

copy(abar_vl , el_v , oclen );
el_v += oclen ;
abar_vl += mu * oclen ;

}
}

// perform bad muls and outer DFTs
word* abar_v = abar;
word* rho_vl = t; // just for the name
const index top_mu = mu * base_pow ; // top level mu
unsigned psh = int_log2 ( top_mu ); // shift count
// cycle through all a_v to perform bad muls and outer DFTs
for ( unsigned v=0; v <2*m; ++v) {

// skip first loop iteration : v == 0, i.e. abar_ {v,l} *= rho ^0 = 1
word* abar_vl = abar_v ;
unsigned vlbase = 0;
for ( unsigned l=1; l<mu; ++l) { // cycle thru all values for l

vlbase += v * base_pow ;
abar_vl += oclen ;
unsigned pi = vlbase & ((1 << psh) - 1); // vlbase % top_mu
unsigned pe = vlbase >> psh; // vlbase / top_mu
// select right rho_pow and do cyclic shift
modpoly_mul_xpow_mod_mp1 (rho_vl , rho_pow + pi*oclen , pe , m, iclen , pz );
// abar_ {v,l} *= rho ^{ vl}
modpoly_mul_mod_mp1 (abar_vl , abar_vl , rho_vl , m, iclen , pz );

}

// now abar_v contains \ tilde {a}_v. ready to do outer DFT : recursive call
dkss_fft (abar_v , mu/2, m, oclen , iclen , pz , rho_pow , base_pow * 2*m);

// copy back to ’a’ array
word* a_fxv = a + v * oclen ;
word* abar_vf = abar_v ;
for ( unsigned f=0; f<mu; ++f) {

copy(a_fxv , abar_vf , oclen );
abar_vf += oclen ;
a_fxv += 2*m * oclen ;

}

abar_v += mu * oclen ;
}

}

The listing shows one of the few optimizations I was able to implement: in the run-time anal-
ysis in Section 3.3, Step 5.ii we counted 2M multiplications by powers of ρ and another 2M
multiplications to compute those powers. I was able to reduce the number of multiplications
for the latter from 2M to µ = 2M/2m.

I used the fact that ρ2M/2m = ρµ = α: if i ∈ [0 : 2M − 1], set r := bi/µc and s := i mod µ and
thus i = rµ+ s.
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Therefore it holds that ρi = ρrµ+s = ρµ·rρs = αrρs. We can obtain ρi with an additional cyclic
shift by precomputing all ρs, s ∈ [0 : µ− 1]. In benchmarks, this almost halved the run-time.

In the above listing function dkss_inner_fft_eval() is called. This function doesn’t dif-
fer much from the QMUL FFT evaluate function qmul_evaluate() on page 20, except that
this time functions instead of operators are used to add and subtract elements, and multipli-
cations by powers of the root of unity are done by cyclic shifts. Following is the listing of
dkss_inner_fft_eval():

void dkss_inner_fft_eval (
word* e, // input vector
unsigned n_half , // half of FFT length
unsigned m,
unsigned oclen , // outer coeff length = m * iclen
unsigned iclen , // inner coeff length >= bit_length (pz) / bits ( word )
word* pz , // p^z
word* t) // temp storage

{
if ( n_half == 1) {

// lowest layer : butterfly of two outer coeffs ,
// i.e. add and sub of two inner polynomials
word* e2 = e + oclen ; // second inner polynomial
copy(t, e2 , oclen );
modpoly_sub (e2 , e, t, m, iclen , pz ); // e2 = e - t
modpoly_add (e, e, t, m, iclen , pz ); // e = e + t
return ;

}

dkss_inner_fft_eval (e, n_half /2, m, oclen , iclen , pz , t);
dkss_inner_fft_eval (e + n_half *oclen , n_half /2, m, oclen , iclen , pz , t);

unsigned inc = m / n_half ; // increment for each loop
word* e1 = e; // first inner polynomial
word* e2 = e + n_half * oclen ; // second inner polynomial
unsigned pow = 0;
for ( unsigned i=0; i< n_half ; ++i) {

// w = omega_n ^i, t = w*e2
modpoly_mul_xpow_mod_mp1 (t, e2 , pow , m, iclen , pz ); // cyclic shift by pow
modpoly_sub (e2 , e1 , t, m, iclen , pz ); // e2 = e1 - t
modpoly_add (e1 , e1 , t, m, iclen , pz ); // e1 = e1 + t
e1 += oclen ;
e2 += oclen ;
pow += inc;

}
}

4.3 Asserting the Code’s Correctness

Development included writing a lot of test code. Every major function has some unit tests
following it. The unit tests usually contain fixed data to be processed by the function to be tested
and compare its output to results that are known to be correct, since they were computed by
other means: Python programs were used to compute the correct results for FFTs in polynomial
quotient rings, a different method for multiplication was used to test DKSS multiplication, and
sometimes the correct results were more or less obvious and could be hard-coded by hand.

Additionally, functions contain assertions (like C++’s assert()), which are assumptions that
are written together with the (proper) code and are checked at run-time. Often, these are pre-
and post-conditions of functions. Some asserts call functions that were solely written for use
in assertions, like a test for primitivity of a root.
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To have the best of both worlds, code can be compiled in Debug or Release mode with Visual
Studio. Release builds have all asserts disabled and are compiled with optimizations for maxi-
mum speed, while Debug builds feature assertion checking, but code optimization is disabled to
aid debugging. Test code is usually run in Debug mode, while benchmarks are run in Release
mode.

Furthermore, after development of DKSS multiplication was completed, it was integrated into
my framework of long integer routines that is maintained as a private project. This framework
is used for primality testing of Mersenne numbers (numbers of the form 2p − 1). Of course, it
can not compare to the Great Internet Mersenne Prime Search [GIMPS], the distributed effort
to find new Mersenne prime numbers that is going on since 1996 and has found the last eleven
record prime numbers.

Nevertheless, I have been checking Mersenne numbers for primality for over two years now and
a database exists of the low 64 bits of the result (called the residue) for each Mersenne number.
The primality test used for Mersenne numbers is the Lucas-Lehmer test [CP05, ch. 4.2.1]. It
consists of a loop of a long integer square, a subtraction by 2 and a modular reduction. The
nature of this test causes even single-bit errors to proliferate, so any error would most likely
alter the residue as well. Since it is hard to test all code paths with unit tests this makes it a
good way to test a multiplication routine.

As a system test DKSS multiplication was used in Mersenne number primality tests and its
results were compared against existing results. The first 35 Mersenne primes (the largest being
21 398 269 − 1) were correctly identified as such. Furthermore, all Mersenne numbers 2p − 1 with
p < 120 607 and various other sizes were tested and the residues matched.

4.4 Execution Time

Our main interest is to find out how fast DKSS multiplication is in comparison to other, well
established algorithms. Except for small and medium lengths, Schönhage-Strassen multiplica-
tion was the fastest algorithm that used all-integer methods in practice so far. I compare both
implementations DKSS_MUL and SMUL to one another.

Figure 19 shows graphs of DKSS_MUL and SMUL execution time (and Figure 24 shows some of the
raw data). The cyan-colored and the magenta-colored graph show execution time if p was not
rounded up to the next multiple of the word size, and if p was in fact rounded up, respectively
(cf. Section 4.1). It is always faster to use a rounded up p than to use the “original” value.

As can be seen clearly, DKSS_MUL is much slower (about 30 times) than SMUL (printed in green)
over the whole range of tested input lengths. From this graph it is hard to see if DKSS_MUL is
gaining on SMUL. Section 4.8 discusses the quotient of run-times and the location of a crossover
point in detail.

The stair-like graph stems from the fact that execution time almost totally depends on the FFT
length 2M and the size of elements of R = P/(αm + 1) with P = Z/pzZ. Since both M and m
are powers of 2, many different input lengths lead to the same set of parameters.

The graph shows that execution time is almost the same for the beginning and the end of each
step of the stair. The only part that depends directly on N is the encoding of the input numbers
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Figure 19: Execution time of DKSS_MUL

and decoding into the resulting product. But the time needed to do the FFT clearly dominates
overall execution time.

In contrast to DKSS_MUL, the SMUL execution time graph is much smoother. In fact, it is repro-
duced without marks that would otherwise only obscure the graph, because there are a total of
12 969 data points available, of which 465 representative points are shown.

Obviously, DKSS_MUL parameter selection could be improved, since sometimes larger input num-
bers lead to faster execution times. Either, more research on parameter selection or a calibration
process should smooth this out.

4.5 Memory Requirements

DKSS_MUL memory requirements are dominated by three times the size of the polynomials: input
a(x) and b(x) ∈ R[x] and the āv(x). The result c(x) requires no further memory, since storage
of one of the input polynomials can be reused. An improved implementation could save the
āv(x) directly back into the polynomial without need for temporary storage, thus saving one
third of memory requirements. To accomplish that a fast matrix transposition is needed, which
in itself is not trivial (cf. [Knu97a, exercise 1.3.3-12]).

The polynomials each have 2M coefficients in R = P[α]/(αm + 1), where P = Z/pzZ. Hence,
each polynomial needs 2Mmdlog pze bits. With M ≈ N/ log2N , m ≈ logN and pz ≈
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Input length DKSS_MUL memory DKSS_MUL SMUL memory SMUL Q
(words) (bytes) blow-up (bytes) blow-up

3648 803 584 27.54 251 848 8.63 3.19
7168 1 623 040 28.30 501 704 8.75 3.24

14 336 3 228 672 28.15 962 728 8.39 3.35
28 160 6 439 936 28.59 1 855 528 8.24 3.47
56 320 12 862 464 28.55 3 693 672 8.20 3.48

110 592 25 707 520 29.06 7 240 136 8.18 3.55
221 184 51 422 464 29.06 14 331 384 8.10 3.59
434 176 102 819 072 29.60 28 372 232 8.17 3.62
868 352 205 612 288 29.60 56 716 552 8.16 3.63

1 703 936 406 915 072 29.85 111 269 224 8.16 3.66
2 752 512 616 798 080 28.01 178 538 880 8.11 3.45
5 505 024 1 233 557 376 28.01 361 056 896 8.20 3.42

10 878 976 2 467 113 216 28.35 705 184 592 8.10 3.50
21 757 952 4 934 174 976 28.35 1 477 143 728 8.49 3.34
42 991 616 9 765 277 440 28.39 2 819 507 024 8.20 3.46
85 983 232 19 530 403 584 28.39 5 638 486 864 8.20 3.46

Figure 20: Memory requirements of DKSS_MUL and SMUL

1
2N

5/ logN (see (4.1)) that results in

2Mmdlog pze ≈ 2N/ log2N · logN · log(1
2N

5/ logN)

= 2N/ logN · (−1 + 5 logN − log logN)
≈ 10N.

The listing of function dkss_fft() in Section 4.2 shows that more memory, namely another
(2m+ 1) · dlog pze ≈ 10 log2N bits, is allocated, but compared to 10N bits for each polynomial
that is of no big consequence. The same applies to the 2M/2m precomputed powers of ρ, each
with a length of mdlog pze bits. Together, they only need 2M/2m ·mdlog pze = Mdlog pze bits,
that is, a 2m-th part of the memory of one polynomial. Hence, if both input numbers have N
bits, total memory needed by DKSS_MUL is

MDKSS_MUL(N) ≈ 30N bits.

Let us now compare the memory requirements of DKSS_MUL to SMUL. According to (2.32),
MSMUL(N ′) = 4N ′ bits. I wrote “N ′”, since in Chapter 2.9 “N” describes the length of the
product, hence N ′ = 2N to adjust notation to this chapter. Ergo, the approximate amount of
temporary memory for SMUL is MSMUL(N) = 4N ′ = 8N bits.

Figure 20 shows an overview of actual memory consumption for selected input sizes for both
DKSS_MUL and SMUL. The lengths chosen are the most favorable lengths for DKSS_MUL. At those
lengths, the coefficients of the polynomials in DKSS_MUL are fully filled with bits from input
numbers a and b (as much as possible, as the upper half of each polynomial still has to be zero
to leave room for the product). Increasing the lengths by one would lead to the least favorable
lengths that need about double the memory for almost the same input length.
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The column “DKSS_MUL blow-up” shows the quotient of DKSS_MUL memory requirements and
the size of one input factor in bytes. The column “SMUL blow-up” shows the same quotient
for SMUL. The column “Q” shows the quotient of DKSS_MUL and SMUL memory requirements.
Column “DKSS_MUL blow-up” nicely fits the approximated memory of 30N as well as column
“SMUL blow-up” supports the approximated memory requirements of 8N .

4.6 Source Code Size

Given the description of the DKSS algorithm in Chapter 3, the implementation is relatively
straight-forward. About one third of the newly written code is needed for performing polynomial
arithmetic: addition, subtraction, comparison, cyclic shifting and output and furthermore, us-
ing Kronecker-Schönhage substitution, multiplication, squaring and exponentiation. The other
two thirds are taken up by the core DKSS routines, code to compute the primes p and other
supporting code.

Underlying the DKSS code are routines that had to be written, but are not otherwise mentioned
here, since they are not an immediate part of DKSS multiplication, like: factoring of long integers
into primes and Lucas primality test [CP05, sec. 4.1] (for the computation of primes p for rings
P), extended Euclidean algorithm (to compute modular inverses in Hensel lifting and Lagrange
interpolation), a C++ class for long numbers (to handle non-time-critical calculations easily), a
faster division with remainder (see [Knu97b, ch. 4.3.1, p. 272] and [BZ11, ch. 1.4.1]). Other code
that was used had already been written before: basic arithmetic, benchmarking code for speed
tests, the Lucas-Lehmer test for primality for Mersenne numbers and a database of Mersenne
number primality test results.

To give an idea about the size of the source code of DKSS multiplication, the following table
shows the counts of lines of code. The second column (“Total source lines”) contains the count
including test and debug code, assertions, comments and empty lines, while the third column
excludes those and only counts lines of code that actually do work in a production version
(“Pure code lines”). The big difference in numbers is mostly because of test code. The above
mentioned underlying routines are not included in the counts.

Description Total source lines Pure code lines
Polynomial arithmetic 958 295
Core DKSS multiplication 1374 336
Precomputation of primes p 139 86
Other supporting code 279 157
Total program code 2750 874
Table of precomputed primes p 1707 1705
Total 4457 2579

“Table of precomputed primes p” contains an array of 1703 prime numbers of the form h ·2n+1
for each bit length from 2 to 1704, with the smallest odd h. Data from this array is needed for
DKSS_MUL, but it doesn’t really qualify as code, because it’s only a list of constants. Since only
values for p are used that are a multiple of 64 bits long and input numbers are limited by the
64-bit address space of the CPU, a list with 6 values for p would have done as well.
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Compare this to the line counts of the implementation of Schönhage-Strassen multiplication:

Description Total source lines Pure code lines
Core SMUL multiplication 805 323
Fast cyclic shifts 518 253
Other supporting code 414 237
Total 1737 813

The row “Fast cyclic shifts” shows a special feature of the SMUL implementation: I went to great
lengths to write fast cyclic shift code that takes advantage of different shift counts (like word-
or byte-aligned). The original function for cyclic shifts had only 4 lines!

4.7 Profiling

To get a feeling for which parts of DKSS_MUL use up the most computing time, I did some
profiling of the code. Visual Studio’s built-in profiling did not perform very accurately and
I had some technical difficulties. So instead I used a small self-made solution: I timed the
execution of certain code parts manually.

This is not a thorough investigation, but just serves to gain a better understanding where hot
spots of execution lie. Thus, I have chosen just five different input lengths for measurement.

In a first run, I measured the execution times for FFT setup (precomputation of ρ and its
powers), the time needed for all three FFTs, pointwise multiplications and encode/decode/nor-
malization of the result.

Input length FFT setup dkss_fft() Pointwise En/decode &
(words) multiplications normalize

3648 18.00 % 58.60 % 16.55 % 6.85 %
28 160 2.26 % 79.46 % 12.88 % 5.40 %

221 184 0.66 % 84.40 % 10.53 % 4.41 %
10 878 976 0.39 % 88.56 % 8.19 % 2.86 %
42 991 616 0.27 % 87.71 % 9.32 % 2.70 %

Figure 21: Profiling percentages for DKSS_MUL

Figure 21 shows the results. I only present percentages of execution time. From this table
several conclusions can be drawn:

• Computation of ρ and its powers, something which has to be done before the FFT starts,
takes a diminishing share of time as the input gets longer. When numbers are in the
millions of words long, it doesn’t carry any significant weight in the overall run-time. This
was to be expected.

• The same holds in principle for encoding, decoding and normalizing of the polynomials.
It’s more expensive than computing ρ and its powers, but with a decreasing share of the
total cost. This too, was to be expected.
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• Even the pointwise multiplications seem to be getting less prominent in the overall cost.
Maybe this shows that parameters could be selected better? More research is needed here.

• The one part which is taking a growing share of the total cost is the DKSS FFT itself. I
cannot assess from this data whether the share will be ever growing or reaches a plateau.
Still, most of the execution time is spent here, so this is why we look more closely into its
run-time.

In Figure 22 we see the percentages of execution time that are needed by the constituent parts of
the DKSS FFT. It is performed by computing inner DFTs, bad multiplications and outer DFTs,
which for their part are calculated by recursively calling the FFT routine and therefore again
calculating inner DFTs and bad multiplications. The respective columns contain the execution
time summed up over all levels of recursion. This table is normalized, so that total time of
dkss_fft() is 100 %.

Input length (words) Inner FFT Bad multiplications Rest
3648 22.24 % 76.09 % 1.67 %

28 160 16.98 % 80.90 % 2.12 %
221 184 16.20 % 81.23 % 2.57 %

10 878 976 10.21 % 87.66 % 2.13 %
42 991 616 9.50 % 89.36 % 1.14 %

Figure 22: Profiling percentages for dkss_fft()

The column titled “Rest” contains some call overhead, the copying of ajµ+` into e` and the copy
back of the āv coefficients into the a array. I suspected that cache thrashing would slow this
process down a lot, but these results show that this is not the case.

From this more specific analysis we learn that most of the time in dkss_fft() is used up by
bad multiplications and their share is growing. That sure is a hot spot. So we will have a look
into bad multiplications, which are multiplications of two arbitrary elements of R.

Figure 23 shows a breakdown of execution time for multiplications of elements of R. Multiplica-
tions are done by Kronecker-Schönhage substitution: encode polynomials as integers, multiply
the integers, decode them back to polynomials, perform the “wrap around”, that is, the modulo
(αm+1) operation, and perform the modulo pz operation on the inner coefficients. Again, total
time of bad multiplications was normalized to 100 %.

Input length m Words per Integer Modular Rest
(words) inner coefficient multiplication reduction

3648 16 2 47.33 % 38.92 % 13.75 %
28 160 16 2 46.72 % 39.69 % 13.59 %

221 184 16 2 46.57 % 39.80 % 13.63 %
10 878 976 16 3 57.37 % 33.14 % 9.49 %
42 991 616 32 3 66.48 % 26.67 % 6.84 %

Figure 23: Profiling percentages for bad multiplications

Since Kronecker-Schönhage substitution depends on R, it only depends on parameters m and
pz, but not M nor u. The first three rows have the same values for m and pz, so it fits the
theory well that the percentages are more or less the same.
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Time needed for modular reduction is not negligible and a better means than modulo division
might save some time here (Fast mod operation for Proth moduli, [CP05, p. 457]). But the trend
seems to be that for growing lengths the share of execution time needed for modular reductions
is shrinking.

In column “Rest” the times for encoding and decoding between polynomials and integers are
lumped together. This seems to be quite slow and a more careful implementation could speed
it up, but again, that percentage will only drop as input numbers get longer.

From this profiling analysis we have learned that bad multiplications are really bad! Up to
90 % of execution time is spent there and its share is growing. In order to reduce overall
execution time, we should reduce the number of bad multiplications and/or make them cheaper.
Maybe better parameter selection could reduce execution time here, which is left open for future
research.

4.8 Gazing into the Crystal Ball

One goal of this thesis is to compare the speed of a DKSS_MUL implementation with an SMUL
implementation. As was described in Section 4.4, SMUL is still much faster for the lengths tested.

In addition, it would be interesting to estimate the input length where DKSS_MUL starts to be
faster than SMUL. To do that, we look again at the most favorable lengths for DKSS_MUL, that is,
the lower right points of the steps in Figure 19, where the execution time graph for DKSS_MUL
is nearest to the SMUL graph. Figure 24 lists execution times at those points and the quotient
of these times. Figure 25 shows a graph of the quotient of execution times vs. input length.

Length DKSS_MUL time DKSS_MUL SMUL time SMUL Quotient
(words) (cycles) (min:sec) (cycles) (min:sec)

3648 133 948 102 0:00.039 4 149 866 0:00.001 32.28
7168 288 821 718 0:00.085 8 884 604 0:00.003 32.51

14 336 636 214 972 0:00.187 19 131 288 0:00.006 33.26
28 160 1 373 645 624 0:00.404 39 547 108 0:00.012 34.73
56 320 2 908 271 180 0:00.855 81 912 772 0:00.024 35.50

110 592 6 013 189 608 0:01.769 179 448 020 0:00.053 33.51
221 184 13 430 829 526 0:03.950 425 460 492 0:00.125 31.57
434 176 29 461 464 342 0:08.665 882 781 300 0:00.260 33.37
868 352 62 917 787 338 0:18.505 2 167 722 116 0:00.638 29.02

1 703 936 122 680 187 946 0:36.082 4 576 352 552 0:01.346 26.81
2 752 512 199 424 397 176 0:58.654 7 495 493 476 0:02.205 26.61
5 505 024 410 390 455 672 2:00.703 15 269 441 152 0:04.491 26.88

10 878 976 892 949 727 060 4:22.632 31 013 681 856 0:09.122 28.79
21 757 952 1 917 703 330 120 9:24.030 65 485 660 216 0:19.260 29.28
42 991 616 3 965 210 546 518 19:26.238 132 248 494 436 0:38.897 29.98
85 983 232 8 145 120 758 260 39:55.624 288 089 862 672 1:24.732 28.27

Figure 24: Execution times of DKSS_MUL and SMUL
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Figure 25: Quotient of DKSS_MUL and SMUL run-times vs. input length

At first sight, there is an apparent trend in the quotient of execution times. Looking at Figure 25
we might, as a first approximation, assume a linear relationship between log10N and the quotient
of execution times. Linear regression with a least squares estimation leads to the line f(N) =
−1.54 · log10N + 39.62, which has a correlation coefficient of −0.723. Solving f(N) = 1 leads
to N ≈ 1025 ≈ 283 bits.

On the other hand, analysis of SMUL execution times in Section 2.9.5 showed that SMUL reaches
its “final” speed only above input lengths of about 512 Kwords (cf. Figure 13). So it seems
that Figure 25 not so much shows the speed-up through improved speed of DKSS_MUL, but the
slow-down of SMUL because of diminishing positive effects of caching. If we do linear regression
with data points starting at input length 512 Kwords only, we get g(N) = 0.88 · log10N + 22.11,
that is, the quotient would be growing! Obviously, this type of analysis is not very reliable.

As we did for SMUL in Section 2.9.5, we can use the measured data points to try to model the
run-time of DKSS_MUL. Writing (3.19) with an explicit constant we get

Tδ(N) ≤ N · logN · 2δ·log∗N . (4.2)

Calculating the constant δ from each data point and plotting all of them gives the graph in
Figure 26, with average δ ≈ 1.2727. In contrast to Figure 13, no effect of caching is apparent.
We only have few data points, so this model of run-time is not very resilient. Yet, the modeled
run-time matches the measured values ±10 % and even within ±5 % for input lengths ≥ 28 160
words. With the few data points we have, it seems to be the best we can do.
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Figure 26: DKSS_MUL constant δ

Taking (2.33) and (4.2) we can solve

Tδ(N) ≤ Tσ(N)
N logN · 2δ log∗N ≤ σN logN · log logN

2δ log∗N ≤ σ log logN
δ log∗N ≤ log σ + log log logN.

For large N we substitute ν := log logN and with (3.16) get

δ(log∗(log logN) + 2) ≤ log σ + log log logN
δ(log∗ ν + 2) ≤ log σ + log ν. (4.3)

Solving (4.3) numerically yields the enormous solution of ν ≥ 498 and hence N ≥ 1010149 bits!
An optimistic estimation of the number of bits for computer memory available in this universe
is 10100. So this crossover point is orders of orders of magnitude higher than any machine could
hold that anyone could ever build.

Even if DKSS_MUL was only about 2 times slower than SMUL, the crossover point would still be
at N ≈ 10300 bits and thus unreachable.
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Conclusion

De, Kurur, Saha and Saptharishi describe a new procedure to multiply very large integers
efficiently (cf. Chapter 3, implemented as DKSS_MUL). The currently widely used all-integer mul-
tiplication algorithm for large numbers is by Schönhage and Strassen [SS71] (my implementation
is called SMUL, cf. Section 2.9). The run-time of DKSS_MUL is in a better complexity class than
that of SMUL, meaning that if input numbers are long enough, DKSS_MUL will be faster than SMUL.
Both algorithms were implemented and their run-time (Section 4.4) and memory consumption
(Section 4.5) were compared (on a PC with 32 GB memory and a 3.4 GHz processor).

The results indicate that Schönhage and Strassen’s multiplication algorithm is the better choice
for a variety of reasons:

1. SMUL is faster than DKSS_MUL.
Benchmarks show that SMUL is still about 26 to 36 times faster than DKSS_MUL (Section 4.4
and especially Figures 19 and 25). The estimate of the input length at which DKSS_MUL is
faster than SMUL (Section 4.8) is N ≥ 1010149 bits (which is larger than googolplex), but
even if SMUL was only 2 times faster than DKSS_MUL, the crossover point would be so large
that it could never be reached.

2. SMUL requires less memory than DKSS_MUL.
If both input numbers are N bits long, DKSS_MUL requires about 30N bits of temporary
memory, where SMUL requires only about 8N bits (Sections 4.5 and 2.9.4). The memory
requirements of SMUL can not be lowered significantly, but there is an obvious possibility
to lower DKSS_MUL memory consumption to its lower limit of about 20N bits that was not
implemented.

3. SMUL is easier to implement than DKSS_MUL.
A simple implementation of SMUL needs about 550 lines of C++ code, where DKSS_MUL
requires about 900 lines plus at least 6 lines of constants and more supporting routines,
see Section 4.6. An improved and faster version of SMUL requires about 800 lines of code.

It should be mentioned here that the SMUL implementation is better optimized than DKSS_MUL.
The reason for that is that Schönhage-Strassen multiplication is now studied and in wide use
for many years and its details are well understood. I have spent considerable time to improve
its implementation. In contrast, DKSS multiplication is still quite young and to my knowledge
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this is the first implementation of it. Section 5.1 describes several possible improvements to
DKSS_MUL that could be realized. Still, in my appraisal none of them has the potential to speed
up DKSS_MUL so much that it becomes faster than SMUL in the range of input lengths that was
examined here or even in ranges that might be accessible in the future.

5.1 Outlook

In the course of writing, I encountered several possible areas for improvement. I list them here
and try to assess their potential to improve run-time.

• Find optimum values of parameters M , m, u and pz for any given N .
Figure 19 still shows some areas where longer input numbers lead to shorter execution
times. Furthermore, Section 4.7 shows some developments in percentages of run-times
that could suggest that a better choice of parameters is possible. More research is needed
to understand how to choose the fastest set of parameters.

• Cache computation of ρ and its powers.
This is an obvious possibility to save execution time, but it cannot save a great share
when numbers get longer. Figure 21 shows how the percentage of execution time of “FFT
setup” diminishes as numbers get longer. This has no potential to lower the crossover
point.

• Add support for “sparse integers” in the underlying multiplication.
DKSS_MUL reduces multiplication of long integers to multiplications in R, a polynomial
ring. When it comes to multiplication of two elements of R, they are again converted to
integers (via Kronecker-Schönhage substitution, see Section 3.2.6) and have to be padded
with zeros. About half of the words of each factor are zero and a future multiplication
routine could exploit that. Profiling in Section 4.7 showed that up to 85 % of execution
time is spent with multiplication of elements of R and a rising percentage of that is used
by the underlying integer multiplication. I optimistically estimate the potential of this
idea to speed up DKSS_MUL to be almost a factor of 2.

• Count the number of non-zero coefficients in Kronecker-Schönhage substitution.
We have to pad the polynomial coefficients for Kronecker-Schönhage substitution (cf.
Section 3.2.6) with zeros, partly because multiple coefficient products are summed up
and we must prevent that sum from overflowing. By counting the number of non-zero
coefficients prior to multiplying them, we could upper bound the number of products.
I estimate one or two bits of padding per coefficient product could be saved, but since
coefficients are themselves at least 64 bits long, their product is at least 128 bits, so the
potential saving can be no more than about 1–2 % and shrinks when numbers and thus
coefficients get longer.

• Implement dkss_fft() with less extra memory but matrix transposition instead.
This is definitely an improvement that should be implemented, because it brings down
the memory requirements from about 30N bits to about 20N bits (cf. Section 4.5). Yet,
from the numbers obtained by profiling, I estimate the potential saving in run-time to be
only a few percent at best. Furthermore, it seems that efficient matrix transposition by
itself is non-trivial.
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• Exploit the build of Proth prime numbers p.
The modulus of P is a prime number of the form h · 2M + 1, where h is a small positive
odd integer and M is a power of 2. Maybe modular reductions can be sped up by the
technique listed in [CP05, p. 457]. This has the potential to save a great part of the cost
of modular reductions, which showed to cost about 22 % of run-time in profiling.

If all potential savings listed above could be achieved, this would speed up DKSS_MUL by a factor
of about 2.5. Not included in this factor is a better parameter selection. But even if that and
other, yet unthought-of, improvements lead to another speed-up by a factor of 2, DKSS_MUL
would still be at least 4.8 times slower than SMUL and need about 2.5 times more memory. As
explained on page 63, even then the crossover point could never be reached.



Appendix A

Technicalities

Tests and benchmarks were run on a machine with an Intel Core i7-3770 processor (Ivy Bridge
microarchitecture) with 3.40 GHz clock rate. Hyper-threading, enhanced SpeedStep and Turbo
Boost were disabled to enhance accuracy of timings. The mainboard is an ASUS P8Z77-V with
32 GB PC-1600 dual channel DDR3 memory.

The CPU has four cores, of which only one core was used while benchmarking. That is, the
other cores were not switched off, but no other CPU-intensive process was running, except for
the operating system itself. To improve cache performance, the process affinity was fixed to
processor 2, which seems to get less interrupt and DPC load than processor 0.

The CPU has level 1 caches per core of both 32 KB for data and 32 KB for instructions, unified
level 2 caches of 256 KB per core and a unified level 3 cache of 8 MB for all cores. Caches
lines are 64 bytes long and all caches are 8-way set associate, except the level 3 cache, which is
16-way set associative.

The operating system used was Windows 7 Ultimate with Service Pack 1 in 64-bit mode.

For benchmarking, the priority class of the process was set to the highest non-realtime value,
that is, HIGH_PRIORITY_CLASS. The thread priority was also the highest non-realtime value,
THREAD_PRIORITY_HIGHEST. Together, that results in a base priority level of 13.

Timings were taken by use of Windows’ QueryThreadCycleTime() function that counts only
CPU cycles spent by the thread in question. It queries the CPU’s Time Stamp Counter (TSC)
and its resolution is extremely good: even though the CPU instruction RDTSC is not serializing
(so some machine language instructions might be executed out-of-order), the accuracy should
be of the order of a 100 cycles at worst, most likely better.

As development environment Microsoft’s Visual Studio 2012, v11.0.61030.00 Update 4 was used
which includes the C++ compiler v17.00.61030. Code was compiled with options /Ox (full
optimization), /Ob2 (expand any suitable inline function), /Oi (enable intrinsic functions), /Ot
(favor fast code) and /GL (whole program optimization).
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